
Reading Kent Beck’s book,
eXtreme Programming Explained,
was my epiphany. It reminded me of
my days as a baby programmer. In-
stead of writing reams of specs, in
those days we prototyped everything
and reworked projects in short itera-
tions, with our customers sitting
alongside. Although that worked pret-
ty well, as the years progressed I
found myself working in more tradi-
tional waterfall methodologies, with
varying degrees of success. I missed
the immediacy and close contact with
customers I experienced in my first

job—and as I heard more and more
people talking about XP, I recognized
a set of practices that perfectly fit my
own style.

Driving the XP Car
Kent Beck, a noted author on the sub-
ject, compares XP to driving a car: you
have to watch the road and make con-
tinual corrections to stay on track.

When I started working as the
sole tester on a ten-person XP team, I
wondered who was driving the car,
and how I could help make sure it ar-

rived safely at its destination. What
was going to keep the team from get-
ting lost or making a wrong turn? Who
was going to make them stop and ask
directions?

The answer? You guessed it: the
tester. The tester acts as the naviga-
tor—reading the acceptance test
“maps,” interpreting the customer’s
requests, watching for signposts in the
form of acceptance test results, and
letting everyone know how the jour-
ney is progressing. As tester, you’re
part of the XP team, yet you function
with a level of independent objectivity.

www.s tqemagaz ine .com STQE Ju ly/Augus t 2001
24

TestingTesting

QUICK LOOK

■ The tester’s role in eXtreme
Programming

■ Tips for planning and
performing acceptance tests

■ Navigating challenges of
high-speed, iterative design

How a tester can steer an eXtreme

Programming project toward success

by Lisa Crispin

eXtreme
of the

L ike many other test engineers and quality assurance managers, I’ve experienced
much frustration over the years with projects that are late, over budget, and in
the end don’t meet customer needs. I’m not alone; a 1995 Standish Group study

showed that only 16.2% of software projects are completed on time and within budget.
But why?

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

Through trial and error, I’ve dis-
covered some major contributions that
a tester can make to help the XP team
arrive safely and on time at its destina-
tion. (Although I use the term “tester”
here to refer to the position you fill on
the XP team, you will use both testing
and quality assurance skills.)

Let’s take a test drive through a
typical two-week iteration (or short re-
lease cycle) of an XP project to exam-
ine the roles of an XP tester. The proj-
ect we’ll be working on is the first
release of a Web application, a project
just now beginning its third iteration.
This is the stage in which the develop-
ers will fully implement features cho-
sen by the customer, and you’ll be
defining and executing acceptance
tests. This process will provide details
about how the features should work,
and you’ll use the test results to prove
to the customer that the requested
functionality is delivered.

First Gear: Planning
We’re on day one of this two-week XP
iteration, and it’s time to hold what
Beck calls a “planning game” meeting
with the customer, the tester, and the
development team. We held our first
such meeting at the very start of this
release cycle, before we even backed
the car out of the driveway, and we re-
peat that process (albeit on a smaller
scale) at the start of each iteration. In
these meetings the customer defines
the “stories,” which are 3 × 5 cards de-
tailing the features or sets of function-
ality to be developed. The developers
estimate for the customer how much
work (measured by a point system)

each story will take, and how many to-
tal points can be completed in this two-
week iteration. The customer chooses
stories that add up to that amount of
effort and no more.

Assumptions are the first obsta-
cles as we set out on the road. They’re
as hard to avoid as tumbleweeds on
eastern Colorado highways, and they
can do a lot more damage.

Customers often assume that their
intentions are obvious. Conversely,
most developers are used to being
forced to rely on their own assump-
tions about what the customer wants,
since in traditional software develop-
ment the customer isn’t always around.

As the tester, one of your most im-
portant jobs is to steer everyone away
from making assumptions. Your best
strategy is to ask lots of questions, es-
pecially during the planning meetings.
If the customer says, “I want a security
model so that members of different
groups have different capabilities,” you
should ask, “How should the error han-
dling work? Can the same user be
logged in multiple times? How many
concurrent logins should the system be
able to handle?” The customer may be
assuming you’ll know he wants the sys-
tem to handle a hundred concurrent
users, while the developers may as-
sume that in this iteration you’re focus-
ing only on the functionality and not
robustness.

Speaking from experience, it’s
better to ask now than have an un-
pleasant surprise for someone later on.
You might consider assembling a
checklist to go through: validation, er-
ror handling, load, security, uptime.
Make notes on the story cards, the
whiteboard, paper, in whatever form
you can refer to later when you’re writ-
ing acceptance tests. You won’t think
of everything, but the team will have
better directions for their journey.

Stop, Look Both Ways,
Listen...
Once our development team feels they
understand the stories well enough,
and each story has been assigned “ef-
fort points,” we break each story into
tasks. Everyone chooses tasks for
themselves and estimates the re-
sources each task will require.

During this time, you may notice
that the developers have missed
something the customer wanted. I re-

member one scenario (one I’ve seen
repeated many times) where the cus-
tomer wrote a story that said “screen
for creating record.” The customer as-
sumed that my team would under-
stand that she also wanted to read,
modify, and delete records on that
same screen. I got this, but because it
slipped by the developers, their task
estimates were off. We then had to ex-
plain to the customer that the revised
estimate was bigger than originally
stated, giving her two options: living
with only the create screen for now, or
changing her mix of stories to stay
within the maximum points for that
iteration.

While development tasks are be-
ing listed, estimated, and assigned,
make sure tasks needed for testing
are included too. Task and story esti-
mates should include time for both
testing and test support. For example,
you might need a script to load test
data. Even if you assume responsibili-
ty for this yourself, you still need to
add it to the task list. Thinking about
these tasks will help lead the team to
a test-friendly design—and serves as a
reminder that testing is the responsi-
bility of the entire team, not just the
tester.

Second Gear: Writing
Acceptance Tests
Day two, with miles to go. Iteration
planning used up the first day of our it-
eration, which is typical. So far, we
have some index cards with “stories” in
which the customer has summarized
the functionality he wants. We’ve dis-
cussed these stories and drawn pictures
on the whiteboard to help us under-
stand them, but we haven’t written
down many details about them. Here’s
where the acceptance tests come in.

These acceptance tests incorpo-
rate the discussions of the planning
game, as well as subsequent conversa-
tions between the customer and the de-
velopment team. In effect, they become
the requirements document for an XP
project. They are the road maps for the
iteration, telling the team where it
needs to go and what landmarks to
watch for along the way. Since these
tests are so critical to the success of the
iteration, they must be written as early
in the iteration as possible. Your goal is
to have them approved by the customer

Ju ly/Augus t 2001 STQE www.s tqemagaz ine .com
25

[Acceptance tests] are

the road maps for the

iteration, telling the

team where it needs to

go and what landmarks

to watch for.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

and delivered to the developers within a
day after the end of the planning game.

In XP, acceptance tests are ulti-
mately the responsibility of the cus-
tomer. In fact, rumor has it that on
some XP projects the customer actually
writes the acceptance tests. My experi-
ence, however, has been different. Cus-
tomers, especially external customers,
are busy; they usually have a full-time
real job in addition to working on your
project. They don’t have time to sit
down and type up tests. Most cus-
tomers aren’t experienced testers, and
probably can’t write effective accep-
tance tests by themselves.

Get together with the customer
for a short meeting and describe what
acceptance tests are needed. If the
customer is willing and available,
have him pair with you to produce the
test definitions and write the tests.
I’ve had good luck getting customers
to describe tests that prove intended
functionality using the system only as
it was intended—and never doing any-
thing weird like clicking the same but-
ton twice or doing things out of se-
quence. But it’s more difficult to
define tests that will help the team
avoid those unforeseen potholes and
blind curves. What happens, for ex-
ample, if the end user tries a totally
unexpected path through the online
system? What are the ways someone
might try to hack past the security?
It’s the unexpected actions or data
that often reveal problems.

The customer must also specify
criteria for load and performance test-
ing, if this is important for the current

iteration. You should have discussed
this in the planning game, but you
need specifics for testing. If a system
is expected to handle large numbers
of users or transactions, or perform at
a certain speed, the developers’ esti-
mates may need to be higher. You may
even need a separate story for system
stability or performance.

Have the customer provide the
test data for acceptance tests, so that
it more closely resembles the produc-
tion data. You both may need to be
creative to come up with data de-
signed to test error handling or nega-
tive conditions. Load test data proba-
bly has to be generated, but
sometimes the customer already has
large files of data they can provide.

Acceptance Criteria
Acceptance tests are designed to tell
us when we’ve successfully completed
the iteration’s functionality. In XP, ac-
ceptance tests—unlike unit tests—
don’t necessarily have to pass 100%.
So how do we know when we’re
“done”? As with any set of software
development practices, we can’t ex-
pect totally bug-free code, so we need
some criteria to know when we can
release software.

I ask the customer to define
which test cases have to pass for the
iteration to be a success. In XP, the it-
eration must end on time—the dead-
line is not negotiable. Given that con-
straint, the customer can demand
100% success for all tests—but this
may come at a cost of higher esti-
mates for the stories. Including non-

critical tests gives the customer more
flexibility. If they pass, they give the
customer extra confidence; if they are
still failing at the end of the iteration,
the customer can decide whether to
expend resources in the next iteration
to fix the defects.

The Nuts and Bolts
of Test Writing
Once you understand the customer’s
requirements for acceptance tests,
you can start drafting the tests them-
selves. Remember, your goal is to
have a good set of test definitions
written by the end of the second day
of the iteration. The goal of accep-
tance tests is end-to-end testing of the
system from the user’s point of view,
not 100% coverage of every path
through the code. In XP, you should
do the minimum acceptance testing
needed to verify that the business val-
ue required by the customer has been
delivered. Some people hear the word
“minimum” and think “insufficient.”
But minimum doesn’t mean shoddy or
incomplete. In XP, testers need the
courage to define the minimum
acceptance criteria, so that you can
keep up with the pace of develop-
ment.

We’re in the third iteration here.
The tests you wrote for the first two
iterations might need additions, modi-
fications, or deletions based on the
new stories. You’ll run the tests for al-
ready-implemented functionality as
regression tests. Any tests that passed
before must now get successful re-
sults every time.

As you write the test cases, there
are some things to keep in mind. Your
tests should provide quick, accurate
feedback on how the iteration and
project are progressing. Avoid lengthy
tests with a lot of steps; if one step
out of two hundred fails, you have to
fail the whole test. Write concise,
granular tests, keeping the action
steps and the test data separate.

Figures 1, 2, and 3 show a sam-
ple acceptance test—consisting of a
test summary, action steps, and test
data—for a login screen. The test con-
sists of only two actions, but they’re
repeated with eight rows of test data,
some that should result in a success-
ful login and some that should get an
error message. You and your develop-
ment team can probably write a script

www.s tqemagaz ine .com STQE Ju ly/Augus t 2001
26

Test Overview
Acceptance test name Login

Ref # 1

Story 6

Iteration 1

Critical functionality Yes

What does this test do? Tests the login screen, validation of user login, and
password

Category User management

Prerequisite Records in rows 2, 3, and 7 in TestCase Sheet 1 are
in database

FIGURE 1 Login test case overview

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

Ju ly/Augus t 2001 STQE www.s tqemagaz ine .com
27

to take the test data from spread-
sheets such as these and put it in a
format your test tool can read, which
will facilitate automation.

Another good practice is to pair
with a developer to review the accep-
tance tests. Together, you may find
tests that might be better performed as
unit tests. If there’s a story for some-
thing only on the back end (e.g., imple-
menting a data structure) that doesn’t
have a user interface story in this itera-
tion to go along with it, unit tests may
be the only sensible alternative. By re-
viewing the tests, the developer may
find a disconnect between the cus-
tomer and the team on a feature that
needs to be resolved. This is the time
to make sure that everyone’s going the
same direction. Even if the customer
has to drop a story because one was
underestimated, this is better than de-
livering something the customer didn’t
want.

Third Gear: Performing
and Automating Tests
It’s the third day of Iteration 3.
You’ve added acceptance tests for
this iteration to the tests already de-
fined for previous iterations. The
customer is satisfied that the results

of these tests will tell him that all the
stories completed by the end of Itera-
tion 3 meet his needs. Next, spend
some time preparing automated test
scripts so that you’ll be ready when
the developers have some code ready
for acceptance testing. You may have
some manual tests from previous it-
erations that you now have time to
automate. You can also make any
needed updates to existing automat-
ed scripts from the first two itera-
tions. Perform all these tasks with
another member of the development
team, switching partners frequently.

The XP books say to always au-
tomate all acceptance tests. This is
ideal, and with a lot of projects it’s
doable. Still, sometimes the cost of
automating all your tests will be
higher than you can manage. How do
you decide which tests to automate?
Ask yourself how much time you can
devote each day to maintaining auto-
mated tests, and how much time you
have to do all your other work. Start
by automating a basic script that
covers the functionality most valu-
able to the customer. If you find you
only spend thirty minutes a day keep-
ing this script up to date as the soft-
ware changes, and you have two
hours a day to devote to test script

maintenance, then add tests to your
automated suite. If load testing is a
priority, spend your automation bud-
get toward that first.

In the race to automate, you can
fall into a trap of oversimplifying
tests. If you have a complicated man-
ual test and don’t have time right
now to automate it, don’t sweat it.
Just make sure the manual test is re-
peatable, that it can be performed in
a timely manner, and that the results
are well documented.

Halfway There
Time passes, work proceeds, and now
we’re entering Week 2 of Iteration 3.
The developers have completed
enough tasks and even an entire story
or two so that you can install and test
some of the code. You may have some
automated scripts that you couldn’t
finish without the actual screens, so
you can complete those now. You run
your automated and manual tests for
this iteration and report any issues you
discover. You run tests from the previ-
ous two iterations. You may find that
there were changes to the software
that require more updates of the older
tests. As you run tests, developers may
want to pair with you to debug prob-
lems your tests found.

1 L O G I N PA S S W O R D E X P E C T E D R E S U LT

2 Testy tester Login successful

3 jim-bob 11111 Login successful

4 NULL NULL Invalid login and/or password

5 empty (spaces) Invalid login and/or password

6 bad (leading space) password Invalid login and/or password

7 : " ; '<>, . { } | [] \^+@! Login successful

8 longloginname12345678901234567890 longpassword12345678901234567890 Invalid login and/or password
12345678901234567890 12345678901234567890

FIGURE 3 Login test case data

S T E P C O M M A N D / U R L A C T I O N I N P U T D ATA E X P E C T E D O U T P U T

1 localhost:8080/login.jsp Enter login name, password, Login and password See expected result in TestCase
submit from TestCase Sheet 2 Sheet 2

2 localhost:8080/login.jsp Repeat step 1 with all rows in TestCase Sheet 2 See expected result in TestCase
TestCase Sheet 2 Sheet 2

FIGURE 2 Login test case actions (abbreviated)

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

www.s tqemagaz ine .com STQE Ju ly/Augus t 2001
28

This pattern continues the next
few days. Each day you have more
completed tasks and stories to test.
Each time the developers have a new
build to test, run all the tests that can
run. Post the results in the develop-
ment room so the team can see how
close they’re getting to the destina-
tion.

Your job isn’t limited to accep-
tance tests. You’ll most likely need to
perform installation, compatibility,
recovery, security, load, perfor-
mance, and stress tests as well. Start
running load and stress tests as early
as possible in the iteration—they
turn up more issues than anything
else.

As you successfully complete
your tasks, celebrate! The energy
boost will help you keep your mo-
mentum.

Avoiding Potholes
The XP tester cannot succeed unless
the developers are strictly following
the XP practice of test before code,
with 100% of unit tests always pass-
ing, and continual integration. If they
don’t, one tester cannot possibly keep
up with the work of four, six, eight, or
ten developers. If the developers don’t
grasp the importance of these XP
practices and your big boss can’t or
won’t enforce them, start hiring more
testers. You’re gonna need them, or
your project that was headed to Mexi-
co is going to end up stranded in the
Mojave Desert.

You need to follow XP practices
too. Refactor your tests and automat-
ed scripts continually. Make them as
streamlined and efficient as you can.

Ask the developers to pair with you to
develop tests or help narrow down a
problem. It can be hard to ask for
help; sometimes you might feel you’re
always having to ask people to inter-
rupt their own work to do you a favor.
Grit your teeth and ask anyway. You’ll
be more productive, produce better
tests, and the developers will learn
more about testing.

Keep the customer in the loop. It
may be disruptive to you and confus-
ing for the customer to sit with you on
the initial test runs. You’ll be discover-
ing problems with your test scripts
and refactoring your tests. But when a
set of tests runs smoothly, invite the
customer to come pair with you. He
may notice something you missed.
He’ll feel good about seeing the
progress being made, even if you’re
discovering defects.

Are We There Yet?
Acceptance test results are the mile
markers along the XP highway. Each
time I run acceptance tests, they pro-
duce a color-coded graph showing
the number of tests written, run,
passed, and failed (see Figure 4 for a
sample report). Early in the itera-
tion, you’ll have new tests for func-
tionality that hasn’t been delivered
yet, so those won’t be run. A lot of
tests will fail. As the days pass, you
look for the green “pass” bar to get
bigger and the red “fail” bar to fade
away. If that isn’t happening, it’s a
sign that your XP car may have taken
a detour, and the team needs to fig-
ure out how to get back on track. It
may mean that the team has taken on
too much for one iteration and needs
to ask the customer to reduce the
scope. It may simply mean that the

developers misunderstood a cus-
tomer requirement and only a few
quick changes are needed. Your ac-
ceptance tests, with results posted
for the whole team to see, provide
the landmarks.

Eyes on the Road
To help the XP team steer, you need
to do more than write, automate, and
run tests. Every day at the “stand up
meeting” (it’s meant to be quick, and
people don’t dally as much when
they have to stand up), each team
member reports tasks completed the
previous day, tasks to be done today,
and any problems they’re having.
This is a good time to ask questions
about potential roadblocks. Pay at-
tention to clues that the work might
exceed the original estimate for a
task.

Each XP team should have a
tracker who finds out how much time
is actually spent on each task and
gives the team feedback on its
progress. That tracker helps make
sure everyone’s following correct XP
processes.

Don’t let anyone assign the
tracker role to you; your job is hard
enough already. But you can help the
tracker. Being in a more detached
role, sometimes the tester can see a
neck-breaking hairpin curve in the
road before everyone else. “Story
XYZ has taken a lot longer than we
thought due to the database prob-
lems. Do we think we need to talk to
the customer about dropping a sto-
ry?” In my experience, developers
are eternal optimists; testers can
help with reality checks. Face it: if
you almost complete every story,
the customer will see 100% failure.
Completing 100% of fewer stories is

Tests Written 5 5 5 5 5

Tests Run 2 5 4 4 5

Tests Passed 1 5 4 3 5

FIGURE 4 An acceptance test report

5 5 5 5 5

2
1

4 4
3

Being in a more

detached role,

sometimes the tester

can see a neck-

breaking hairpin curve

in the road before

everyone else.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

Ju ly/Augus t 2001 STQE www.s tqemagaz ine .com
29

better. You have to finish the itera-
tion on time, and you have the right
to do good work.

Bugs on the Windshield
As described earlier, you and the cus-
tomer agreed that bugs in noncritical
acceptance tests are candidates for
stories in the next iteration. While this
sounds pretty simple, in practice I’ve
found it difficult. It takes time for the
customer to build trust in the XP
team. He may be afraid to go on to the
next iteration until all the defects,
even trivial ones, are fixed. The less
technical the customer, the more inse-
cure he’ll feel and the more likely this
is to happen.

Another common problem is
that issues come up that look like de-
fects but are outside the scope of the
iteration. It’s one thing to imagine
what a screen will look like and how
it will work. When the customer ac-
tually sees the live software, he
might wish that it worked differently
from his original description, or
might think of things he really want-
ed that he forgot to mention. This is
where your acceptance criteria come
in handy. If it wasn’t part of the ac-
ceptance criteria, it doesn’t affect
the successful delivery of the itera-
tion. Fortunately, it can easily be in-
cluded in the next iteration. The cus-
tomer won’t have to wait more than
two weeks at the most.

In our organization, we’re still ex-
ploring alternative ways to handle

outstanding defects to everyone’s sat-
isfaction. You want a happy customer,
but there’s only so much you can ac-
complish each iteration. If you get off
schedule with the iterations, it will be
hard to maintain your speed. Part of
the solution to this problem is thor-
ough up-front education of the cus-
tomer, so that he has a good under-
standing of XP and how you deal with
defects. As you get through more iter-
ations and the customer sees the busi-
ness value being delivered, everyone
will feel more confident.

On the last two days of the itera-
tion, have the customer sit down with
you and run through all the accep-
tance tests (including load, installa-
tion, performance, and other tests
you defined). Let the customer be sat-
isfied that acceptance criteria were
met. If they come up with new stan-
dards for the quality they want, those
can become stories for subsequent it-
erations. When you’re done, the cus-
tomer has new, “real live” software he
can actually use, and you’re ready to
repeat the cycle for the next group of
stories the customer chooses.

I Can See the Ocean!
When I was a kid, the best part of a
trip was finally getting within sight of
our destination. In my previous, non-
XP jobs, delivery day was usually a
nightmare—a time of panic, pointless
bickering, and late hours.

What a revelation the day I ended
my first “real” XP project. Nobody

worked late the day before. On deliv-
ery day of the final iteration, we calm-
ly wrapped up a few tasks and handed
the system over to the customer. We
had time for lunch, and we knocked
off early to go celebrate with a round
of beers.

I won’t tell you XP is all green
lights and checkered flags. There are
days where I’ve hit a roadblock in try-
ing to get a test to work and the devel-
opers are too busy to help me, or I find
some ugly defect through a load test
and the developers think I’m halluci-
nating, or the customer is stressing
about something, and I feel terribly
lonely and hate my job. Sometimes it’s
hard being the only tester. Usually all
that’s needed is a little patience—
maybe working on some other task for
a little while until someone is free to
come pair with me and attack the prob-
lem. Most days, like just about every
other XPer I’ve talked to, I actually
look forward to coming to work. STQE

Lisa Crispin (lisa.crispin@att.net) is
a Senior Quality Engineer at Agile
Development LLC. While she man-
aged to enjoy the 18+ years of her
non-XP career by lucking into fun
projects, she is thrilled now to em-
brace the challenges of being the
tester on an XP team.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

STQE magazine is produced by
STQE Publishing, a division of Software
Quality Engineering.

http://www.stqemagazine.com/

