
Behind

www.stickyminds.com APRIL 2004 BETTER SOFTWARE 25

Test & Measure

TO
N

Y
 S

TO
N

E
 I

M
A

G
IN

G
/G

E
T

T
Y

 I
M

A
G

E
S

JAMES BACH HAS DEFINED EXPLORATORY TESTING AS “SIMULTA-

neous learning, test design, and test execution.” Regrettably, this
useful approach is often applied only to products with graphical
user interfaces. Too few testers have the skills and tools needed to
apply it more broadly. This article aims to give you a start on de-
veloping the skills you need to begin exploring beyond GUI prod-
ucts. It will also introduce you to a tool—the open source Ruby
scripting language—and show you how to use that tool to explore
Google’s Web services interface. You don’t need any programming
experience to read this article.

There are some things this article will not teach you. This article
will give you some feel for exploratory testing’s flow and pacing,
but it won’t teach you exploratory testing or any aspect of test
design. Go to James Bach, Elisabeth Hendrickson, Cem Kaner,
or others for those skills. (See this issue’s StickyNotes at
bettersoftware.com.) This article will not teach you the crunchy
details of Web services. Part of the message of this article is that

A skilled
tester takes
you on
a guided
exploration
of a Web
services
interface.
BY BRIAN MARICK

Screensthe

you don’t need to know the details, given the proper tools. Oh,
you’ll test better if you do, so you should learn them eventually,
but you don’t have to start with the details; you can work your
way into them.

Because of space limitations, I won’t get very far into testing
Google, and I’m sad to say I won’t show you any Google bugs.
But I hope that I’ll take you to the point where you can clearly
see how you could continue on with what I’ve started. To that
end, I recommend you stop reading now and download Ruby
onto your machine. (See this issue’s StickyNotes for instruc-
tions.) C’mon! It’ll be fun!

Introducing Narcissism Unlimited
Let’s pretend I’m a tester working for Narcissism Unlimited,
which runs a website catering to the deservedly famous (Motto:
“All Things for the Self-Absorbed”). Recently, the marketing
department tore its gaze away from the ceiling-height office
mirrors long enough to conceive of a new feature for the NU
home page. The NU home page is customized to each client (of
course). The marketing department wants to add a feature to
that home page so that each time a client visits it, he sees a dif-
ferent favorable quote about himself, culled from somewhere
on the Web.

A technical team is put together to make this feature a reality.
I’m assigned to the team as “chief tester.” We know that Google
provides a Web services interface to its search engine. Having
this interface means that programs can do searches, not just peo-
ple visiting the Google webpage. Our preliminary thought is that
this request by marketing is possible: The results of a Google
search on a client name could be massaged to pick a new favor-
able quote of the day—if, that is, the Google Web services inter-
face is solid enough. It’s my job as chief tester to see if it is.

Writing Programs
Web services are programs that are used from across the Inter-
net by other programs. If I’m going to evaluate Google’s Web
service, I have to write little programs. The NU programmers
are likely to write programs in Java or C#. I’m going to use a
language called Ruby, because it makes it easier to do the kinds
of things I want to do.

One nice thing about Ruby is that it has an interpreter. An
interpreter lets me write little snippets of program and immedi-
ately see what they do. That makes exploration easy.

Ruby’s interpreter is named “irb”. You start it by typing
those characters to a command prompt or shell or, in Windows,
selecting StartpProgram FilespRubypInteractive Ruby Shell.
When you do, here’s what you see:

irb(main):001:0>

All that gobbledygook is irb’s prompt. Every character has
meaning, but none of it matters for this article. In order to save
horizontal space, I’ll abbreviate the prompt from now on.

I can type something to the prompt, and Ruby tells me its
value on the next line:

irb> 1+1
=> 2

Here’s another example. It looks rather different:

irb> "hello".upcase
=> "HELLO"

What I’m doing here is sending the upcase message to the text
string “hello”. The resulting value is the uppercase version of
that string.

Working with the Google Web services will look like work-
ing with strings. Strings are objects that respond to messages.
Ruby makes the Google Web service into an object that re-
sponds to messages. Those messages trigger much magic behind
the scenes, magic that delivers information to a server some-
where, gets results back to me, then displays them. But I don’t
see any of that magic, because I don’t need to.

You now know almost enough programming to understand
the rest of this article. I’ll explain a bit more as I go along.

Connecting to Google
I’ll begin by skimming Google’s Web services documentation
(at api.google.com), reading just enough to get me started. I
want to see Google in action as quickly as possible. After that,
I’ll step back and strategize. Who knows, I may discover imme-
diately that Google is unsuitable. In that case, I’ll be glad I did
not spend much time on the documentation.

My first task is to find out how a program can connect to,
and communicate with, Google’s Web service. I quickly notice
that Google uses WSDL (Web Service Definition Language), a
standard way for Web services to advertise how programs
should talk to them. Many programming languages and envi-
ronments can take a WSDL document and, from it, construct
objects and messages that a program can use. Ruby is one of
those languages.

Ruby’s WSDL package has sample programs for four differ-
ent Web services. Each program connects to its Web service the
same way, so I begin exploring by copying that sequence of
commands. Here’s the first:

irb> require "soap/wsdlDriver"
=> true

The command tells Ruby that I’m going to use the WSDL pack-
age. The value true means that the package is available for use.

irb> wsdl = "http://api.google.com/GoogleSearch.wsdl"
=> "http://api.google.com/GoogleSearch.wsdl"

The long string names a location where my program can find a
WSDL document that describes Google’s Web service. (I got the
location from the Google documentation.) I assign that name to
a variable named wsdl. Whenever I need the string, I can use
the shorter variable instead.

The next thing I type looks like this:

26 BETTER SOFTWARE APRIL 2004 www.stickyminds.com

Test & Measure

Test & Measure

irb> factory = SOAP::WSDLDriverFactory.new(wsdl)
=> #<SOAP::WSDLDriverFactory>

The command looks alarming because of the colons and paren-
theses and periods and the way all the words are jammed to-
gether without spaces. First, let me translate it into English:
“Make a new factory for WSDL drivers using the variable
wsdl that I just created.” Once you’re used to programming,
that kind of translation becomes second nature.

Translating the command only partly helps. What’s a facto-
ry? Well, I happen to know that “factory” is programmer slang
for an object that makes other objects. So the variable factory
now names an object that I can ask to make me some “drivers.”
What are those? I suspect they’re something you use to talk
with (or “drive”) Google. I’ll find out for sure as I explore
more.

The result of the command tells me that the factory is,
specifically, a WSDLDriverFactory. (We’ll see a more informa-
tive example of this kind of output later.)

The next command is the last one I copy from my examples.
It looks like this:

irb> driver = factory.createDriver
=> #<SOAP::WSDLDriver>

Let’s take stock. I went through four steps to connect to
Google. I’d use the same four steps to connect to any Web ser-
vice; the only difference is the string I give as the value for wsdl
(the second step). Now that I’m connected to Google, it’s time
to explore.

Exploring Google
What can I do with driver? How, exactly, do I talk with
Google? Again, I could read the documentation, but let’s see
how far I can get without it. Ruby has a nice feature: You can
ask any object what messages it responds to by sending it a
message named methods. (A method is the code snippet that
responds to a message. Other languages call such things func-
tions, subroutines, or procedures.) I do that for driver:

irb> driver.methods

The result is a list of about 100 message names. Many of them
are ones you can send to any object, be it a factory, a number,
or a string. But some others catch my eye because they seem
Google-specific:

[…, "doGetCachedPage", … , "doSpellingSuggestion", …,
"doGoogleSearch", …]

I know from years of using Google through my Web browser
that it caches pages so that they can be viewed even when the
original site is unavailable, suggests alternate spellings for
search terms, and—most of all—searches.

The message doGoogleSearch seems like a useful one to
try. Monster of vanity that I am, I search for myself:

irb> driver.doGoogleSearch("Brian Marick")
ArgumentError: wrong number of arguments(1 for 10)

Rats. The message doGoogleSearch actually takes ten (ten!)
arguments, not the single one I gave it. There’s no way I’ll guess
all those arguments, so I’ll have to browse the documentation.
A document called the API Reference tells me what the ten ar-
guments are. They are:

1. A key that identifies me to Google. I got this when I down-
loaded the documentation.

2. The search string.

3. The “index” of the first desired result. (I’ll explain that next.)

4. The maximum number of results I want. It can be a number
between one and ten. If I want more results, I have to repeat
the search and use the third argument to tell Google I want the
next ten.

5. Whether Google should filter the results to avoid near-dupli-
cates. This value is either true or false.

6–10. A bunch of stuff I don’t think I care about just now.

Armed with my newly acquired key, I can now do a search that
works.

irb> result = driver.doGoogleSearch("mykey", "Brian
Marick", 0, 10, true, " ", false, " ", " ", " ")

If you’re trying this at home, you’ll have to substitute the key
you get from Google for mykey above. (Be sure to keep the
quote marks.)

Notice that the index of the first desired result is 0. Most com-
puter languages start counting from zero. It’s just something you
have to get used to. Notice also that I had to give values even for
the five parameters I don’t care about. Google insists on it.

This works and produces a blizzard of what looks like gob-
bledygook:

=> #<SOAP::Mapping::Object:0x623a28 @searchQuery="Brian
Marick", @searchTime=0.11519, @documentFiltering=true,
@startIndex=1, @searchTips=" ", @resultElements=
[#<SOAP::Mapping::Object:0x621ebc @summary=…

What you’re looking at is Ruby’s way of displaying an object
when no programmer told it a better way. (Earlier we saw it dis-
play numbers, strings, factories, and drivers. In each case, some-
one told Ruby how to display them.) I call this the #<stuff> no-
tation. It has two parts. The first identifies what type of object it
is (a SOAP::Mapping::Object), together with a peculiar number
(0x623a28) that is almost always irrelevant. (It’s the location of
the object in memory.) The rest of the stuff shows the compo-
nents that make up the object. The first is @searchQuery, whose
value is the string “Brian Marick”. (The proper Ruby term for

www.stickyminds.com APRIL 2004 BETTER SOFTWARE 27

Test & Measure

“component” is instance variable. I’ll use
“component” for this article.)

There’s interesting information in that
solid block of text, but it’s hard to pick
out. Fortunately, a kind programmer
named Akira Tanaka has made it easier.
He wrote a package named “pp” (for
“pretty print”). I’ll use that to put each
component on its own line, nicely indent-
ed. You can see the first part of the re-
sults in Figure 1. To save space, I’ve omit-
ted uninteresting components like
@searchQuery and @searchTime.

What have I got here? The result is
some object that has a component
named @resultElements. What’s that?
Its value has this form, spread out over
several lines:

@resultElements=[SOAP::Mapping::Object,
SOAP::Mapping::Object, …]

That’s the Ruby way of printing lists or arrays. Each object in
the array is evidently a single search result. (I asked for up to
ten of them.) I look at the first one.

The @URL is www.testing.com. That’s great! It’s my main
website. The following @snippet is fine— I recognize the text
from my webpage. The @summary is reasonable, but it spells
my name wrong. Where did that come from? It’s certainly not
from www.testing.com!

I go back to the API Reference to see what it tells me about
the summary component of a search result: “If the search result
has a listing in the ODP directory, the ODP summary appears
here as a text string.” That’s not enormously helpful because
the document nowhere defines “ODP”. However, it’s short
work (using Google) to find that ODP is the Open Directory
Project, which aims to be “the most comprehensive human-re-
viewed directory of the Web.” Some kind person submitted my
site, but misspelled my name. Oh well. I make a note that NU
might want to include the ODP in our new personalization fea-
ture, then move on.

Making Exploring Easier
At this point, I want to do some more searches, but it’s annoy-
ing that doGoogleSearch requires ten arguments. I don’t want
to type those all the time (and retype them when I make the in-
evitable mistakes). What I’d rather do is type search(“Brian
Marick”) and have that search method handle the details for
me. That’s easy to do with a method definition that tells Ruby
how to take an argument to search and substitute it into a use
of doGoogleSearch:

def search(for_string)
driver.doGoogleSearch("mykey", for_string, 0, 10, true, " ", false,
" ", " ", " ")

end

For convenience, I’ll put that definition into a file named
“goog.rb” so that I can use it each time I start irb. Unfortunate-
ly, however, search won’t work. Let’s see it not work:

irb> load "goog.rb"
=> true
irb> search("Brian Marick")
NameError: undefined local variable or method 'driver' for main:Object

from ./goog.rb:2:in 'search'
…

The error message tells me that driver isn’t available within the
function search. The next line tells me the problem happened
on line 2 of “goog.rb”. A simple fix is to make driver into a
global variable (one that’s available inside every definition) by
prepending a dollar sign: $driver. Also, my four lines of setup
have to use $driver instead of driver. It seems easiest to put
those four lines in “goog.rb” so that loading it does everything I
need. Here’s the result:

require "soap/wsdlDriver"

wsdl = "http://api.google.com/GoogleSearch.wsdl"
factory = SOAP::WSDLDriverFactory.new(wsdl)
$driver = factory.createDriver

def search(string)
$driver.doGoogleSearch("mykey", string, 0, 10, true, " ", false,
" ", " ", " ")

end

I also decide the pretty printed results, while nicer than the raw re-
sults, are still not convenient enough to read. So I add a show
function that takes the results and prints them to my taste. See Fig-
ure 2. For the sake of brevity, I won’t explain that method here.

irb> require "pp"
=> true
irb> pp result
#<SOAP::Mapping::Object:0x62c010

@resultElements=
[#<SOAP::Mapping::Object:0x627b3c

@URL="http://www.testing.com/",
@snippet=

"Testing Foundations Consulting in Software Testing Brian
Marick. ... I'm Brian
 Marick. Welcome.
This is my web site devoted to software testing. ... ",

@summary=
"Home page of Brian Marrick, author of the book 'The Craft Of

Software Testing'.",
@title="Testing Foundations - Brian Marick">,

#<SOAP::Mapping::Object:0x623fb4
@URL="http://www.testing.com/cgi-bin/blog", …

Figure 1: Prettier search results

28 BETTER SOFTWARE APRIL 2004 www.stickyminds.com

You can find a complete explanation in
this issue’s StickyNotes.

After all that, I load the new defini-
tions and use them:

irb> load "goog.rb"
=> true
irb> show(search("Brian Marick"))

These nested parentheses may be confus-
ing, so think of what happens in two
steps. First, “Brian Marick” is given to
the search function. The search func-
tion uses it as one of the arguments to
doGoogleSearch, which produces the
complicated result we saw before. That
result is given to the show function,
which converts it into pleasant text. Part
of the outcome is shown in Figure 3.

Getting Stuck
So now I have tools that make explo-
ration easier. The last item in Figure 3
catches my eye. NU’s clients like to have
their names linked to other people. What
would happen if I searched for all three
names in this list?

irb> show(search("Mark Swanson
Brian Marick Ralph Johnson"))
XSD::ValueSpaceError: {http://www.w3.org/
2001/XMLSchema}string: cannot accept
'... Ron Jeffries Ralph
Johnson, University of Illinois
Joshua ... Tony Gould, John
Isner,
 Brian Marick,
Ralf Reissing, John Salt, Mark
Swanson, Dave Thomas Âíå
...'.

from /usr/local/lib/ruby/1.8/xsd/
datatypes.rb:184:in '_set'
…

Crud. An error. And deep within a Ruby package, too, judging
by where the message comes from. What’s going on?

Notice anything odd in the message? What’s that funny text
after the name Dave Thomas? There’s an easy way to find
out—try the same search with Google’s browser interface. I see
odd text like that in the first, fifth, sixth, and seventh search re-
sults. And all four point to Japanese language webpages—each
of them a translation of the preface from Martin Fowler’s fine
book Refactoring. When I click through, I discover those mys-
terious characters are the translation of “and”, judging by their
position between the next-to-last and last of a series of names.
Oho! I think I’ve got multilingual character-set issues, some-
thing I know nothing about.

(Honesty compels me to admit that the previous paragraph
is only the path I should have taken. In reality, I wasted about
fifteen minutes because I’m not as observant as an exploratory
tester should be. I missed the Japanese language connection but
got to the same realization via another route.)

I try some more searches, and it turns out that many
Google results contain odd characters that break my little pro-
gram. How do I go forward? Are my tools useless? If not, how
can I fix them? Fortunately, there’s a mailing list for Ruby en-
thusiasts. I post a question and four hours later have a reply
from Hiroshi Nakamura. He gives two ways to fix my prob-
lem. I choose to set the global variable $KCODE to “UTF8”
(the correct character set), and my problem goes away. After

30 BETTER SOFTWARE APRIL 2004 www.stickyminds.com

Test & Measure

def show(results)
for result in results.resultElements

show_one(result)
end
puts "There were #{results.resultElements.length} results."

end

def show_one(result)
puts("URL is #{result.URL}")
puts("title is #{result.title}")
puts("summary is #{result.summary}")
puts("snippet is #{result.snippet}")
puts("-- - - - - - - - - - - - -")

end

Figure 2: The show function and its helper

URL is http://www.testing.com/
title is Testing Foundations - Brian Marick
summary is Home page of Brian Marrick, author of the book 'The Craft Of
Software Testing'.
snippet is Testing Foundations Consulting in Software Testing Brian
Marick. ... I'm Brian
 Marick. Welcome.
This is my web site devoted to software testing. ...
---- - - - - - - - - - -
URL is http://www.testing.com/cgi-bin/blog
title is Exploration Through Example
summary is
snippet is Exploration Through Example. Agile testing, context-driven testing, agile
programming,
 Ruby, and other things of interest to Brian
Marick. ... About Brian Marick. ...
---- - - - - - - - - - -
URL is http://c2.com/cgi/wiki?BrianMarick
title is Brian Marick
summary is
snippet is Brian Marick. I used to write for MarkSwanson and The
Wild Hunt. I took the first
 course in Smalltalk that RalphJohnson taught at the
University of Illinois. ...

Figure 3: Results from the Google Web service

making a note to investigate character set issues more carefully
later, I move on.

When I repeat the search, the results are pleasing. The first
search result is this:

URL is http://www.aw-bc.com/catalog/academic/product/
0,4096,0201485672-PRE,00.html
title is Refactoring: Improving the Design of Existing Code - Addison-
...
summary is
snippet is ... Ron Jeffries; Ralph Johnson,
University of Illinois; Joshua ... Tony Gould, John Isner,

Brian Marick, Ralf Reissing, John Salt,
Mark Swanson, Dave Thomas ...

That’s Addison-Wesley’s webpage for Refactoring. Narcissist
that I am, it pleases me to find my name linked to that of a lu-
minary like Martin Fowler. It seems there’s something to my
idea of using repeated searches to further inflate our clients’
egos. I jot down a note about it and move on. It may seem odd
for a tester to be thinking about product features, but I don’t
think it should be.

Moving Forward
Although I’ve barely begun my imaginary mission of evaluating
Google, I’ll stop my exploration here. I hope I’ve convinced you
that interpreter-assisted exploration can be as productive, fun,
and easy as manual exploration.

But none of that’s true—at first. Imagine a super-intelligent
toddler doing exploratory testing against a product’s GUI. She
would become extraordinarily frustrated because her ideas would
greatly outstrip her manual dexterity. Every thought would be
such a labor to put into practice that she’d never achieve a “flow”
state, never reach the point of effortless creativity.

Something similar will happen to you as you use even a
friendly, interpreter-based programming language like Ruby or
Python. If you don’t know programming, you won’t have the
right reflexes. Things will work fine when you follow—exact-
ly!—a script like the one in this article. But when you make a
mistake, the interpreter will spit out some strange result. It
might make immediate sense to an experienced programmer,
but it will mean nothing to you. You have to stop and puzzle it
out. Bang! There goes the flow.

Toddlers learn to manipulate the world with skill because
they persevere. You’ll have to persevere too, until it becomes
nearly effortless to turn your ideas into Ruby.

It’s hard to persevere alone. I suggest you learn in pairs. Each

of you will keep the other from giving up
too soon. And, since so much of learning
programming is having “Aha!” moments
where something completely obscure sud-
denly becomes clear, you’ll learn faster
when you share than you would alone.

Perhaps the best pairing would be a
tester with a programmer, where each
trades knowledge with the other. The

tester teaches exploratory testing; the programmer teaches pro-
gramming ideas. (See Jonathan Kohl’s article in the January is-
sue of Better Software.)

Some of your beginner’s frustration will be increased if you’re
not used to open source products targeted to programmers. Lan-
guages like Ruby consist of a stable core surrounded by packages
contributed by members of the community. Some of those pack-
ages will be unfinished, though still useful. That’s especially true
of those that track new technologies like Web services. And it’s
the documentation that’s likely to be the most unfinished.

Because of that, your early exploration of something like
Web services may also be an exploration of your language’s
Web services package. Some people find that maddening. You
have to be prepared to experiment, search the Web for exam-
ples of use, or poke around in the package source code for
hints. (These packages are almost always written in the same
language you’re using, which makes it much easier.)

Open source languages have active user communities; his-
torically, Ruby’s has been especially kind to newcomers. If you
ask a question that shows you’ve done some diligent explo-
ration for the answer, you’re likely to get help quickly. And only
a hugely expensive support contract would get you better han-
dling of bugs. While writing this article, I found a problem in
the WSDL package. Its author, Hiroshi Nakamura, posted a fix
twenty-three minutes after I reported the bug. Five minutes lat-
er, my problem had gone away.

In sum, interpreter-assisted exploration isn’t a silver bullet.
There is a learning curve. Because of the interpreter, and be-
cause modern programming languages are more friendly than
those of the past, it’s not incredibly steep—and you can get use-
ful work done along the way. Once you’ve learned, I believe
you’ll find exploration via the interpreter as rewarding as ex-
ploration via the GUI. {end}

Brian Marick has worked in testing since 1981. He is the author
of The Craft of Software Testing, and is the technical editor for
Better Software magazine. Contact Brian at marick@testing.
com. Read other writings at testing.com.

32 BETTER SOFTWARE APRIL 2004 www.stickyminds.com

Test & Measure

Sticky
Notes

For more on the following topics go to www.stickyminds.com/
bettersoftware

� Getting Ruby
� Exploratory testing background
� Kohl’s pair-testing article

I picked Ruby for this article because it’s an easy language to
learn and use, yet powerful enough to do most anything you

want. Other languages would do fine, so long as they have an interpreter and enough of a user
base that the language’s packages keep pace with new technologies like Web services. The
Python language is a fine alternative. Were I testing Java APIs, I’d probably choose it. There’s a
variant named Jython that’s particularly well suited for such testing.

Why Ruby?

