Disciplinary Agency in Test-Driven Design
(DRAFT of early March 2004)

Brian Marick (marick @testing.com)

Andrew Pickering's The Mangle of Practice is about how practice - doing things - causes
change to happen in science and technology. He uses "the mangle" to name the way that
machines and instruments, scientific facts and theories, goals and plans, skills, social
relations, rules of evidence, and so forth all come together and are changed through
practice.

In this paper, I present a detailed case study of the programming practice usually called
"test-driven design." I show how Pickering's analysis, particularly his notion of
"disciplinary agency," applies well to that practice. However, the flavor of this case study
is different than those in his book. Its "dance of agency" gives the lead to disciplinary
agency. Disciplinary agency is less source of resistance, more a causal force in modeling
and goal setting.

Why the difference? Pickering's book presents an ontology. I suggest that ontologies, too,
are mangled in practice.

Setting the scene

So, I don't start with a story like "The game has Squares." I start
with something like: "Player can place a piece on a square."[...]

What I am not doing is worrying about overall game design. [...]
[Ideally], I let the design emerge.

-- William Caputo'

Beck has those rules for properly-factored code: 1) runs all the
tests, 2) contains no duplication, 3) expresses every idea you want
to express, 4) minimal number of classes and methods. When you
work with these rules, you pay attention only to micro-design
matters.

When I used to watch Beck do this, I was sure he was really doing
macro design "in his head" and just not talking about it, because
you can see the design taking shape, but he never seems to be
doing anything directed to the design. So I started trying it. What I
experience is that I am never doing anything directed to macro
design or architecture: just making small changes, removing
duplication, improving the expressiveness of little patches of code.
Yet the overall design of the system improves. I swear I'm not
doing it.

-- Ron Jeffries®

! testdrivendevelopment Yahoogroups mailing list, March 9 2003.

The world, I want to say, is continually doing things, things that
bear upon us not as observation statements upon disembodied
intellects but as forces upon material beings.

-- Andrew Pickering’

A coding example

On February 8, 2004, I wrote a program on American Airlines flight 505 from Chicago to
San Francisco. After I landed, I realized I'd seen a nice example of disciplinary agency.
This is my best reconstruction of what I did.

The context is a small sample application I use to demonstrate test-driven design. Test-
driven design is a practice of writing a test, watching it fail, writing just enough code
(program statements) to make the test pass (while continuing to make all previous tests
pass), cleaning up the code without changing its externally-visible behavior, and
repeating with the next test.

This example is about cleaning up the code. (In the jargon, that's called refactoring.)

Most test-driven design is done with small tests written in a programming language.
They're used to help programmers think about the interface to, and behavior of, the code
they're writing. The thinking is from the point of view of a later programmer writing yet
more code that uses the code now being written.

define on behalf of

that will use

But it's not "code all the way out". At some point, there's a boundary between the code
and the outside world. If one believes in test-driven design, that boundary should also be
defined by tests.

In my application, the outermost boundary is defined by tests written as annotated tables.
You'll find the one in question on the next page. It describes how a veterinary clinician
gives orders during the progress of a medical case in a veterinary clinic. Ignore the first
line for now. The lines in bold font represent clinician actions: what a clinician would
today write on a clipboard. The lines in italics check that the software gives the right
people the right tasks at the right intervals as the result of an order.

* Agile Manifesto authors' mailing list, July 19 2001.
? The Mangle of Practice (1995), p. 6.

This particular test is the third one used to build the application. The first two tests define
billing behavior: that intensive care costs US$40/day whereas normal board costs US$16,
that clients have to pay even if the patient dies, that pathology costs $80, and so on. I
mention this because much of the cleaning up involves comparing the code used to pass
this last test with the code used to pass previous tests.

Orders are given to caretakers and students. Some orders depend on whether the
animal's in intensive care or not.

AnimalProgressFixture
new case Betsy Rankin Rankin brings in a cow
diagnosis severe mastitis

order intensive care

order soap subjective objective
assessment and plan

check student does soap daily

check student temperature 6 hours | 'because in intensive care

monitors

check caretaker does | \milking never | no one milks - milking has
to be ordered.

check student does milking never

order milking

check caretaker does 'milking 12
hours
check student does milking 3 hours | \between student and
caretaker, cow gets milked
every three hours
diagnosis mild mastitis now finish treatment

order normal board

check student does soap daily
check student temperature never
monitors
check student does milking never
check caretaker does 'milking 12
hours
...continued...

order discharge By the way, discharge should
cancel all orders, except that
caretakers should keep milking
until the owner picks up. And
SOAPs are always done.

check |student soap daily
does

check |student temperature |\never
monitors

check |student milking never
does

check |caretaker 'milking 12
does hours

For this to be a useful test, something has to take the information in the table, convert it
into a form a program can understand, deliver it to the program, and compare the results
to the expected results found in the table. I'm using a tool called FIT (Cunningham 2002).
In that tool, the "something" is called a "fixture." The diagram below shows a fixture
sucking information out of a table and sending it into the program.

Sikdjfisik___Iskdjflk
Kjasdlkfj Tkjsdflj sldjf
Ikjsdfijk ksdjff djlkjd

asdf df dfd
sdf df fdf
sdf sdf sdfasdfasd

Fixture

Program

-

The octagon represents the piece (or pieces) of the program that will have to change to
allow the table's test to pass.

One refinement to this style of programming is to write the needed code in the fixture
itself, waiting for something to cause you to move it out into the program. What I hope to
demonstrate is that disciplinary agency can make that decision - and that it can make it

4

well, in the sense that the resulting code looks as if it had been the product of conscious
intention all along.

Let's begin.

The code and how it was made

My goal in this coding episode was first to make the test pass (such that all the check
statements become true statements about the behavior of the code), then to make the code
clean. Before showing the code, let me describe how it was created. (If you're not familiar
with programming, Appendix A might help at this point. It describes how to read the
completed code, which should help you read this section about its creation.)

You'll recall that the first line of the test was a mysterious "AnimalProgressFixture." That
names the kind of fixture that handles that table. Each line in the table is a step in the test.
Most of the lines invoke methods of the fixture. The first cell is the name of the method
and the rest are its arguments. FIT takes care of finding the matching method and
invoking it. Arguments are converted to match the method's declaration. So order |
normal board passes the string "normal board" to the method order, which would look
like this:*

public void order(String order) {
... whatever it takes to issue the order...

}

Lines beginning with "check" are handled differently. Consider check | student does |
soap | daily. The cell "daily" is the expected result, what is to be checked. The cell
"student does" denotes a method that takes a single argument (here, the string "soap").
Since "student does" is not valid Java, it is "camel cased" into "studentDoes", which is.
So this line invokes studentDoes("soap"), which returns a Java String. That string is
compared to "daily". If the comparison fails, the table cell is colored red; if it succeeds,
the cell is colored green.

The process of making a test pass begins by running it. The line check | student does |
soap | daily initially failed because studentDoes didn't even exist, much less give the right
answer. To fix it, I created the method studentDoes, then made it return "daily". That
code looked like this:

public String studentDoes(String task) {
return "daily";

}

That's sufficient to make that check pass, and canonical test-driven design practice is to
do nothing more than that. Later, I had to make this method answer the question "how
often does the student do milking?" The simplest way to make that work was to add an if
statement so that studentDoes returns "daily" for the "soap" task, "never" for milking.
(Here, and in what follows, I use bold font to draw your attention to what's changed in the
new version.)

* This behavior is due to a class called StepFixture that I wrote. It's not currently part of the FIT
distribution.

public String studentDoes(String task) {
if (task.equals("soap")) {
return "daily";
} else if (task.equals("milking")) {
return "never";
}

return "error";’

}

However, later rows in the table reveal that students will milk if the animal is in intensive
care and the clinician ordered milking. So "never" is sometimes the wrong answer to the
question studentDoes("milking"). So studentDoes had to become more complicated. In
particular, it had to have some memory of what the clinician has ordered. The easiest way
to do that® was to make a variable that holds the student milking frequency, set it with the

appropriate values in the appropriate places, and return it in studentDoes, which now
looks like this:

public String studentDoes(String task) {
if (task.equals("soap")) {
return "daily";
} else if (task.equals("milking")) {
return studentMilkingFrequency;

}

return "error";

}

This process of adding variables and if statements continued until the code passed all the
check statements.

With that as preface, glance through the following code, looking for ugliness. I've bolded
the code that was added to pass this test.

> This extra return value is there solely because the Java compiler will whine if I don't put it in. It serves no
purpose as far as the tests are concerned.

% "Do the simplest thing that could possibly work" is a common enough slogan in test-driven development
circles that people use the acronym DTSTTCPW without feeling the need to explain it. A related slogan is
"make it work, make it good, make it fast", the last referring to how quickly the program calculates the
right answer. "Good" is sometimes taken to mean "easy to revise". Bolder people will forthrightly refer to
their own aesthetics (which are taken to be aligned with revisability). For my purposes here, "good" means
"obeying disciplinary agency of a certain sort."

public class AnimalProgressFixture extends fit.StepFixture {
private int balance = 0;
private int dailyCharge = 0;
private String studentMilkingFrequency = "never";
private String caretakerMilkingFrequency = "never";
private String studentTemperatureFrequency = "6 hours";

public void newCase(String animal, String owner) {

}

public void diagnosis(String diagnosis) {

}

public void order(String order) {
maybeUpdateDailyCharge(order);
maybeUpdateBalance(order);
if (order.equals("milking")) {
studentMilkingFrequency = "3 hours";
caretakerMilkingFrequency = "12 hours";
} else if (order.equals("normal board")) {
studentTemperatureFrequency = "never";
studentMilkingFrequency = "never";
}
b

public void charge(int amount) {
balance += amount;

}

public int balance() {
return balance;

}

public void dayPasses() {
balance += dailyCharge;

}

public void payment(int amount) {
balance -= amount;

}

... continued...

public void dayPasses() {
balance += dailyCharge;

}

public void payment(int amount) {
balance -= amount;

}

public void dead() {
¥

public String studentDoes(String task) {
if (task.equals("soap")) {
return "daily";
} else if (task.equals("milking")) {
return studentMilkingFrequency;

}

return "error";

}

public String studentMonitors(String measurement) {
return studentTemperatureFrequency;

}

public String caretakerDoes(String task) {
return caretakerMilkingFrequency;

}

/////] Private methods

private void maybeUpdateDailyCharge(String order) {
if (order.equals("intensive care")) {
dailyCharge = 40;
} else if (order.equals("normal board")) {
dailyCharge = 16;
b
b

private void maybeUpdateBalance(String order) {
if (order.equals("pathology")) {
balance += 80;
¥
¥
¥

To my mind, this code is a disaster waiting to happen. There are too many variables that
keep track of almost the same thing, too many if statements scattered about. It's hard to
see what's going on.

For example, I think the test is inadequate. We see that the clinician specifically orders
SOAPs to be done, and yet the response to check | student does | soap can never be
anything but "daily". That's purely an artifact of "doing the simplest thing that could
possibly work" in the face of a test that does not ask the question "What if the clinician
doesn't order a SOAP?" (Is it really done regardless? If so, why have the explicit order?)

Similarly, the variable studentTemperatureFrequency starts out at "6 hours" despite the
test annotation that the six-hourly check is because the animal is in intensive care. I could
get away with that only because there's no test in which the animal does not start out in
intensive care.

To my mind, the proper response to these two oddities is to add one or more new tests
that express what should happen in the currently undescribed cases. But the existence of
these oddities is obscured by the messiness of the code, so they're easier to overlook than
they should be.

It's time to work the code.’

’ The analogy between a potter working clay and a programmer working code is due to Ward Cunningham:
<http://www.artima.com/intv/clay3.html>.

Refactoring

I scanned the code, looking for violations of my
internal rules for well-formed code, rules quite
similar to those described by Jeffries in the second
scene-setting quote. The first thing I happened to

see was this:
public String caretakerDoes(String task) { BB
return caretakerMilkingFrequency;
b

Does the body of this code express the same thing
as the declaration? No. The declaration says this
code answers a question about a task, but the body Before

What question do you
intend to answer?

answers the question only about the task of milking. | afer
My discipline tells me that the code should be

changed to bring the two into alignment. ED

But it doesn't tell me how. I cannot change the
method name to caretakerMilkingFrequency()
because the caretakerDoes was chosen by the
Customer to be meaningful to her®. I could change
the body to something like this:

public String caretakerDoes(String task) {
return caretakerFrequency(task);

}

But that just moves the problem somewhere else (to the body of CaretakerFrequency).
No, the problem is that the intent of the test (as expressed in the table and resultant
method declaration) is that milking is but one of many possible caretaker tasks. So the
body of the method should echo this intent. A simple solution is to replace the special-
purpose variable caretakerMilkingFrequency with an object that uses task names to find
frequencies. (I think of this as moving Milking out of the name.)

¥ "Customer" is a term of art in Extreme Programming (Beck XX). The Customer describes to the
programmers what the business needs. In this case, part of the description was through tests. As is always
the case, much of the description is conversational. It's important that the programmers not impose the
happenstances of their implementation on the Customer's vocabulary. It is the case, though, that the joint
vocabulary of the whole team (Customer and programmers) becomes mangled (in Pickering's sense) during
the project. That would be an interesting case study in its own right.

The Customer in this scenario is my wife, who is in fact a clinician at a veterinary clinic.

10

Java provides such an object in the form of a HashMap. I can replace:

private String caretakerMilkingFrequency = "never";
with:

private HashMap caretakerFrequency = new HashMap();

n.n

caretakerFrequency.put("milking", "never");

Where I earlier wrote this:
caretakerMilkingFrequency = "12 hours";
I can write:

caretakerFrequency.put("milking", "12 hours");

And now caretakerDoes expresses intention better:

public String caretakerDoes(String task) {
return (String) caretakerFrequency.get(task);

}

I can do the same thing with the similar-looking method studentMonitors:

public String studentMonitors(String measurement) {
return (String) studentFrequency.get(measurement);

}

But at this point disciplinary agency steps forward to say
"Remove duplication!" The bodies of my new versions
of caretakerDoes and studentMonitors look too similar.
The difference between them is who's doing the task -
caretaker or student - but that difference is obscured by A L
their similar appearance.’

Remove duplication

Again, I have a choice about how to remove duplication.
I would prefer to see this:

public String studentMonitors(String measurement) { | Before
return frequency.of("student", measurement); After

; =

public String caretakerDoes(String task) {
return frequency.of(" caretaker", task);
LA

}

? I have to confess it's the duplication of the (String) that grates the most. Better programming languages,
like Ruby, would not have that. Would I then have been so quick to remove duplication? How would the
end result have changed?

11

I like the way that reads - almost English. I also like it because there's another routine that
can be changed in the same way. This:

public String studentDoes(String task) {
if (task.equals("soap")) {
return "daily";
} else if (task.equals("milking")) {
return studentMilkingFrequency;

}

return "error";

}

can become this:

public String studentDoes(String task) {
return frequency.of("student", task);

}

That gets rid of if logic, which my discipline tells me to do. It also gets rid of the "error"
return that was an annoying imposition of a know-it-all compiler. Finally, I also have a
good excuse to set the SOAP frequency in the same place as everything else, instead of
handling it specially inside the body of studentDoes.

In short, I move all the initialization into one place:'

public AnimalProgressFixture() {

nn n.n

frequency.set("caretaker", "milking", "never");
frequency.set("student", "soap", "daily");
frequency.set("student", "temperature", "6 hours");

non n.n

frequency.set("student", "milking", "never");

}

And the only other mention of specific frequencies (like "daily") is when they're assigned
to a task as the result of an order:

public void order(String order) {
maybeUpdateDailyCharge(order);
maybeUpdateBalance(order);
if (order.equals("milking")) {
frequency.set("student", "milking", "3 hours");
frequency.set("caretaker", "milking", "12 hours");
} else if (order.equals("normal board")) {

frequency.set("student", "temperature", "never");

frequency.set("student", "milking", "never");

¥
¥

' This method is called a constructor. It's run automatically when an AnimalProgressFixture is created. So
it serves to initialize the frequencies before the test runs. There was no constructor in the original code
because there was nothing to initialize.

12

Although it was not my goal to localize behavior in a constructor and the order method, it
was the result, and it's a result I'm (provisionally) pleased with. It's nice when following
disciplinary agency's directives lead to happy results I wasn't aiming for. As we work
through this example, you'll see more of that.

A couple of other things have happened. The methods studentMonitors and studentDoes
used to look rather different. Now they look identical save for names ("monitors", "does";
"measurement", "task") that are synonyms as far as the code is concerned. The customer
uses different terminology in different cases but has yet to give the code a reason to
distinguish them. The form of the code now emphasizes that.

The object frequency is nothing that Java provides. I had to create a new class, named
Frequency. (I'm not showing the code. Unlikely as it may seem, I'm trying to be brief.
The code is straightforward.) The need to eliminate duplication has started pushing code
out of the fixture and into the program proper.

Having completed that, disciplinary agency immediately Make that a
takes over again. Look at the order method (just shown). Composed Method
It's at two levels of detail. In the first two lines, the code

is saying things like "maybe update the daily charge E

appropriately..."; in the rest, it's saying "if, specifically,

the order is 'milking', set the frequency to three hours...". ?\
Methods that are all at the same level of detail are called N\

"Composed Methods" (Beck XX). My discipline tells me

to make composed methods. That's simple to do by Before

extracting a new method: After

public void order(String order) { = []

maybeUpdateDailyCharge(order);
maybeUpdateBalance(order);
maybeUpdateFrequency(order);

) LN

private void maybeUpdateFrequency(String order) {
if (order.equals("milking")) {
frequency.set("student", "milking", "3 hours");
frequency.set("caretaker", "milking", "12 hours");
} else if (order.equals("normal board")) {
frequency.set("student", "temperature", "never");

frequency.set("student", "milking", "never");

}
}

13

That's incredibly simple to do. Given my programming
tools, it's a matter of highlighting some code, typing
ctrl-apple-M, then typing the new method's name.
(More about tools later.) But doing so focused my
attention once more on if statements. Both the code in o0

the new maybeUpdateFrequency and the older
maybeUpdateDailyCharge check whether an order is
"normal board":

Before

Remove duplicate
if statements

public void maybeUpdateDailyCharge(String order) {
if (order.equals("intensive care")) {

dailyCharge = 40;
} else if (order.equals("normal board")) {

dailyCharge = 16;
} ~ ? l\
b

My discipline tells me it should only be checked in one LA <:>
place. I should find some way to consolidate these two

After

ifs. A way that comes to mind is to turn an order from a

String into an object that knows how to set frequencies. I'll start by dealing with the if in
maybeUpdateFrequencies. Once I've made my change, the order method will look like
this:

public void order(String orderName) {
Order order = Order.from(orderName);
order.maybeUpdateFrequency(frequency);
maybeUpdateDailyCharge(orderName);
maybeUpdateBalance(orderName);

}

where different kinds of Orders know how to do appropriate frequency updates. For
example, an order to milk causes this method to be chosen:"

static class MilkingOrder extends Order {
public void maybeUpdateFrequency(Frequency frequency) {

non

frequency.set("student", "milking", "3 hours");

nn

frequency.set("caretaker", "milking", "12 hours");

¥
¥

The if statement seems to have vanished, but it's merely moved into Order's from method,
which knows which kind of Order to create:

public static Order from(String orderName) {
if (orderName.equals("milking")) {
return new MilkingOrder();
}else ...

"' Appendix A describes in more detail how the code works.

14

I still have two if statements, one in Order's from and one in AnimalProgressFixture's
maybeUpdateDailyCharge. The next step is to merge the latter into the former by moving
the charge-manipulation code into the appropriate kind of Order. The fact that the daily
charge for intensive care is US$40 moves into IntensiveCareOrder:

static class IntensiveCareOrder extends Order {
public void maybeUpdateDailyCharge(
AnimalProgressFixture animalProgressFixture) {
animalProgressFixture.dailyCharge = 40;
¥
¥

The fact that normal board is US$16 moves into the NormalBoardOrder:

static class NormalOrder extends Order {
public void maybeUpdateDailyCharge(
AnimalProgressFixture animalProgressFixture) {
animalProgressFixture.dailyCharge = 16;
¥
¥

AnimalProgressFixture's maybeUpdateDailyBoard no longer does anything, so it - and its
if statement - can be removed. There is now only one check anywhere for the string
"normal board" (in Order's from method).

At this point, order looks like the following. (I have yet to change maybeUpdateBalance
in a way parallel to maybeUpdateDailyCharge.)

public void order(String orderName) {
Order order = Order.from(orderName);
order.maybeUpdateFrequency(frequency);
order.maybeUpdateDailyCharge();
maybeUpdateBalance(orderName);

¥
Orders are not intended to
But once again the discipline of intention-revealing code apply to test fixtures
comes into play. Notice that the maybeUpdateDailyCharge
methods refer to an AnimalProgressFixture. There's no O

sense in which anyone - customer or programmer - intends i
Orders to apply to AnimalProgressFixtures, which are i\

nothing but glue between the tests and the code that really / N\

solves the Customer's problems. Instead, orders should <:>
apply to something else... a definite thing with its own Before

purpose... something that needs its own name... How After

about a Bill?

}
S h e

15

I move everything about balances and payments into a new Bill class:

public class Bill {
private int balance = 0;
private long dailyCharge = 0;

public void charge(int amount) {
balance += amount;

}

public int balance() {
return balance;

}

public void setDailyCharge(int dailyCharge) {
this.dailyCharge = dailyCharge;
¥

public void applyDailyCharge() {
balance += dailyCharge;
¥

public void payment(int amount) {
balance -= amount;

¥
¥

These familiar methods are now grouped together into an object that is, pleasingly, only
about one thing: money. Now the AnimalProgressFixture's charge method can just ask
the Bill for information:

public void charge(int amount) {
bill.charge(amount);

}

or create Orders that update the bill and the frequency:

16

public void order(String orderName) {
Order order = Order.from(orderName);
order.maybeUpdateFrequency(frequency);
order.maybeUpdateBill(bill);

}

The fixture is now not doing much - it's starting to look more like "glue" and less like
program logic.

public class AnimalProgressFixture extends fit.StepFixture {
private Frequency frequency = new Frequency();
private Bill bill = new Bill();

public AnimalProgressFixture() {

nn n.n

frequency.set("caretaker", "milking", "never");
frequency.set("student", "soap", "daily");
frequency.set("student", "temperature", "6 hours");

n.on n.n

frequency.set("student", "milking", "never");

}

public void newCase(String animal, String owner) {

}

public void diagnosis(String diagnosis) {

}

public void order(String orderName) {
Order order = Order.from(orderName);
order.maybeUpdateFrequency(frequency);
order.maybeUpdateBill(bill);

}

public void charge(int amount) {
bill.charge(amount);

}

public int balance() {
return bill.balance();

}

...continued...

> The old order updated the balance and the daily charge separately. But there's no reason for the fixture to
care - or even know about - what orders do to bills, so I merged the two into a single maybeUpdateBill.

17

public void dayPasses() {
bill.applyDailyCharge();
¥

public void payment(int amount) {
bill.payment(amount);

}

public void dead() {
¥

public String studentDoes(String task) {
return frequency.of("student", task);

}

}

public String caretakerDoes(String task) {
return frequency.of("caretaker", task);
¥
¥

public String studentMonitors(String measurement) {
return frequency.of("student", measurement);

But the constructor at the top is annoying. Why
should setting up an AnimalProgressFixture be all
about frequency? And it is also suspicious that it's
the longest routine. (The longest routine is always
suspicious.)

That code should be moved into the Frequency class:

class Frequency {
public Frequency() {
set("caretaker", "milking", "never");
set("student", "soap", "daily");
set("student", "temperature", "6 hours");
set("student", "milking", "never");

}

Notice how the "6 hours" stands out. Something is
probably wrong here - it's more likely that the

18

That piece of the fixture
mis-conveys intention

——

\
O

)

Before

After

)

\
o O

starting "temperature" should be "never". Another test is needed. (Recall that I noticed
this in the original fixture, but I claim that it's more noticeable now.)

Does anything else jump out?

The name "Frequ " t bit. If I i t Fick an.mtentlon—
quency" grates a bit. were given to revealing name

personifying things, I'd say that Mr. Intention Revealing
is sleeping restlessly. Something's wrong here. The word
"frequency" isn't one that I've heard the customer use.

There's a mismatch between the world outside the code |

and the world inside the code. I would prefer, along with / i N
Evans (XXX), that the two be tuned to each other.

Before <:> @

After

What word would work better? One that comes to mind
is "Schedule". The Frequency object holds the schedule
of tasks for all the people who do tasks. So I rename

Frequency and change frequency.of(person, task) to T |
schedule.frequencyOf(person, task). I'm still a little / ————
uneasy about the name, but it's better, and I know I can 1 \

easily change it later. U <:>

Thinking about the Story

Having told the story, I want to answer two questions. First, is this a "manglish" story,
one that fits Pickering's model? Unsurprisingly, I think it is. Second, is this a boring
manglish story, or does it deviate in any interesting ways from Pickering's case studies?

.

On the latter question, I'll let you be the judge.

The mangle of refactoring practice
Certain key ideas recur in Pickering's stories. Do they occur here?

Is the story open ended? Yes. I did not predict at the beginning what the program would
look like at the end. Or, to be more accurate, I predicted that it would look like the last
time I made these tests pass, but I was wrong. I didn't anticipate the Schedule class.
Instead, I expected to have Students and Caretakers who knew their own schedule. I've
written a program that passed these tests before, and I did end up with a Student and a
Caretaker class, and I saw no reason why that history wouldn't repeat itself.

Open-endedness is a typical feature of test-driven design, as the quotes that opened this
paper suggest. We practitioners expect the final shape of the program to surprise us. Our
literature is fond of the noun "emergence". We tell each other stories of how refactoring
sessions lead to new classes with unforeseen capabilities."

Similarly, there is a strong element of contingency. Something trivial caused me to end
up in a different place in this programming episode than when I implemented the exact
same tests once before. Was it that I fixed messiness in a different order this time? Was it

" For a legendary story, see http://c2.com/cgi/wiki?WhatIsAnAdvancer

19

that I was marginally more disciplined? Was it increased cosmic ray flux at 35,000 feet?
Who knows?

Is there a dance of agency and a decentering of the human subject? Check. The story
is one of alternation. My discipline told me of a problem, then fell silent (mostly) to let
me fix it. The pictures I use to adorn the story capture the feeling that disciplinary agency
is speaking to me to set a direction for my next application of human agency. Since, in
this dance, it's very much the discipline that takes the lead, I think it fair to say the human
subject (me) is not at the center of the story.

Is there tuning? Yes, though the story only shows a hint of it. The hint is in the naming.
"Schedule" is a new idea. I asked the customer, and she has no notion of a schedule as a
distinct thing that keeps track of everyone's tasks. Instead, her model of a clinic has
independent agents - students and caretakers - who are assigned tasks and are thereafter
responsible for carrying them out.

If the story of this program going forward is typical, there will be more tuning coming
up: the language the customer uses to talk about the problems the program is to solve will
tune itself to concepts embodied as names in the program, while the program's names will
continue to adjust to the customer's model of the world. There will likely come a point of
interactive stabilization, though that point will never be fixed forever. For the moment,
though, the only point of interactive stabilization is that disciplinary agency has nothing
more to say about how this version of the program should be changed.

Because all of these Pickeringesque words work for this story, I declare it a manglish
story.

Differences

In the four case studies that make up the bulk of The Mangle of Practice, human and
nonhuman agency have distinct jobs. For the most part, nonhuman agency resists and
human agency accommodates.' Nonhuman agency doesn't make much of an effort to
help out.

In my case, it felt as if nonhuman agency were helping out. At each point at which I
finished a task, I asked my discipline what to do next, and it told me.

Before going into that further, am I in fact talking about disciplinary agency in
Pickering's sense? It seems to me I am. Pickering talks of disciplinary agency as a matter
of "particular routinized ways of connecting marks and symbols with one another" (p.
115). That's what my story is about. Someone familiar with my discipline can look at
"before" and "after" snapshots of the code and describe the connections in routine ways.
"Extract Method was used to convert the method into a Composed Method" is not a

" I'm sure the careful reader of Mangle - hi, Andy! - can point to cases where each does a different job -
indeed, the phrase "dance of agency" suggests a parity that "dialectic of resistance and accommodation"
does not, but I maintain the overall tendency is as I've described. I expect that's because of the particular
episodes Pickering described. The quaternion story differs from mine because Hamilton was making a
breakthrough whereas I'm just doing some mundane programming. The free quark story differs because
Murpurgo was trying to make a machine do something never done before, whereas I'm making Java do the
kinds of things it's often used for.

20

different kind of statement than "he multiplied the two equations and used the associative

"

law".

But Pickering also says that disciplinary agency "leads us through a series of
manipulations within an established conceptual system" (p. 115), and that is not quite the
case here. In his story of Hamilton's discovery of quaternions - the story that brings
disciplinary agency to the fore - Pickering talks of new conceptual structures being
modeled on old ones. The modeling is divided into three iterated phases: bridging, a free
human move that sends exploration off in a particular direction; transcription, a forced
exercise of habits or routines appropriate to the new starting point, often uncovering
resistance (the bridging extension doesn't work); and filling, a free human move to
answer questions unanswered by either the original bridging extension or the
transcription moves.

In my story, disciplinary agency doesn't lead: it points. It does the bridging for me:
"Make the next version like this one, but without this particular duplication."" Now I, the
human, do a bit of filling. Which of several possible ways of eliminating the duplication
do I choose? Having done that, I move to transcription, rote work. For example, having
decided that I will remove a duplicate if by creating an Order class and its various
specific subclasses (IntensiveCareOrder and the like), the path from the current code to
the next version was one of applying a set of standard moves well-described in the
literature (see Fowler XX, Wake XX, and especially Kerievsky XX).

I want to call the disciplinary agency that points impulsive agency. I chose the name
because "impulse" has the connotation of giving something a push, which is what the
agency did to me, but also because "impulsive" suggests a liveness and even whimsicality
that is appropriate to this context.

I single out impulsive agency for a name because it appears repeatedly in test-driven
programming. Programmers are continually ceding responsibility that is traditionally
their own to some outside agency.

For example, it's traditionally a programmer's responsibility to consider carefully the
totality of the requirements for a task, think carefully about a design that would satisfy
those requirements, then write code that implements the design. In test-driven design,
though, the programmer gives up the desire for totality. Instead, a series of tests is
processed, one at a time, in a tight iterative loop. First the test is presented, then the code
is tweaked to make it pass, then the code is cleaned up. Repeat ad infinitum and watch
the design emerge. The tests serve as impulses for programmer action, and the
programmer trusts that discipline will produce a result as good as the more thoughtful
approach.

" T could choose which of several possible bridging moves to start with. I could ponder whether I should
first remove this duplication or, instead, make that method more intention-revealing. In practice, I don't
consciously do that - I simply take the first one that catches my attention. I also have some choice in
considering whether some particular similarity between two methods counts as duplication or whether a
particular chunk of code reveals intention well enough. And, indeed, different programmers can make
different judgments on such matters. but this seems to me more a matter of differences in their disciplines
than a matter of choice: once I've perceived a duplication, I must seek to remove it. So I contend these
human choices are "in the noise" - the real action is in the rules of the discipline.

21

Impulsive agency acts at several levels.

Pass this big test %a,,&
P

Pass this test Pass this test

and
e g

|
“l

£

At the lowest level - the level of my story - it acts to direct refactoring. At the next level,
as just described, it provides tests that goad the programmer into writing code. This is not
non-human agency in Pickering's sense, since a human (typically the programmer
herself) creates each test to move the program one step closer to a goal. Nevertheless the
tests are impulsive in my sense. Those tests, in turn, are derived from some test of larger
scope, typically created through conversation between a programmer and a customer.'®
Given the mandate to satisfy that test, the programmer decides which pieces of the
program to change, then acquires or creates lower-level tests to direct those changes."

Before discussing this in more detail, let me say something about what it means for the
programmer to say "OK" in response to an impulse. In the text describing my
refactorings, I pretended I had completely free choice to respond to discipline's direction.
That's misleading.

For example, consider my decision to create an Order class to remove duplicate if
statements. I could (perhaps) have come up with a different way, but why bother? This is
a classic use of subclassing and runtime polymorphism. It's what languages like Java are
for. Moreover, as a consequence of making that change, I isolated a bunch of similar if
statements into one of Order's methods:

'® These top-level tests are less common than the lower-level tests. Often, the direction to the programmer
is given solely in the form of conversation with the customer, rather than through conversation+test.
Nevertheless, the conversation serves as an impulse: a pushing of the programmer in a direction, without
any commitment that the place she comes to rest is the final, predictable-in-advance goal.

"7 My description of the creation of the original code to clean up didn't look like the picture on this page.
That's because the program is simple enough that the Big Test could be understood as direct instructions to
change what - at that point - was a small amount of code. I didn't need to divide the problem of passing that
test into smaller problems, each with its own test or tests.

22

public class Order {
public static Order from(String orderName) {

if (orderName.equals("milking")) {
return new MilkingOrder();

} else if (orderName.equals("intensive care")) {
return new IntensiveCareOrder();

} else if (orderName.equals("normal board")) {
return new NormalBoardOrder();

} else if (orderName.equals("pathology")) {
return new PathologyOrder();

}else {
return new Order();

¥
¥

This method represents no innovation; it's a standard way of dealing with a standard
problem. It even has its own name: Factory Method (Gamma et al 1994). Quite a lot of
what I and other programmers do is adapt standard solutions to recurrent problems. In the

jargon, we "apply patterns"."®

Now that the fad for chaos theory has passed, I feel safe in using the word "attractor" for
this effect. So I claim that this style of programming consists of being given a push in a
particular direction by impulsive agency, applying free choice in the details of moving in
that direction, but having that free choice frequently captured by attractors.'” Once the
impulse has been satisfied, the programmer turns to outside (in some sense) agency for
the next impulse, all the while serenely confident that the end result will be something
that is fit for its purpose and internally coherent and aesthetically pleasing.

I'm most interested in that serene confidence - whence comes it? - but let me first finish
discussing this particular kind of dance of agency. I've presented the most extremely
decentered picture of programming. In my rhetoric, the human is not doing much at all:
just being pushed and attracted, ad infinitum. There is lively debate among programmers
about where the center should lie and how much humans actually do. Ron Jeffries is one
of the foremost proponents of a decentered view. Yet, as I quoted him at the beginning of
this paper, he at first "was sure [Beck] was really doing macro design 'in his head' and
just not talking about it." There are people today equally sure that Jeffries is

"® The term "pattern” is due to the architect Christopher Alexander, who has had an enormous effect on the
practice of programming. An inadequate definition of a pattern is "a solution to a recurrent problem in a
context". In Alexander's formulation, the context is the result of applying earlier, "higher-level," patterns.
So, for example, Alexander (XX) will begin designing a house by using a pattern that helps decide where a
house should stand on a particular plot of land. The next pattern would determine the orientation of the
house. This can continue on through the layout of the rooms, decisions about how to shape the outside
space, where windows should be placed, and so on - all the way down to the width of the trim. For the most
part, the patterns guide free choice. (Although Alexander is pretty dogmatic about the width of the trim.)

' An attractor may also figure in Hamilton's story. Pickering mentions in a footnote <find this> that
Hamilton had previously toyed with non-commutative algebras, so I could argue that his background
knowledge of what such algebras do was an attractor when he was dealing with a problem posed by
transcription.

23

unconsciously doing design, that it is impossible for someone with roughly forty years of
programming experience not to be thinking forward and guiding the design. And there
are certainly many programmers who explicitly move the center toward themselves: they
do more upfront thinking about design, they plan ahead.

Nevertheless, I think the majority of test-driven programmers do less up-front design than
they used to, are more willing to accept the surprising emergence of structure, and would
perhaps even agree that there's an alternation between their "doing" and the "doing" of
something else. So I believe my particular variant dance of agency fits both Pickering's
model and test-first programming practice.

The interesting question to me is why we test-driven programmers think this works. My
answer is that it is made to work by constructing an ontology in which the programming
world consists of helpful attractors and impulsive agency whose whimsicality doesn't
often push you down paths from which you can't readily recover. It is a world without
scary resistance, one in which software is actually soft - malleable, shapeable, workable.
This world has some precedent. Consider the worldview that Cornel West attributes to
Ralph Waldo Emerson in his (West's) The American Evasion of Philosophy.

1. Emerson held that "the basic nature of things, the fundamental way the world is,
is itself incomplete and in flux" (p. 15). Moreover, the world and humans are
bound up together: the world is the result of the work of people, and it actively
solicits "the experimental makings, workings, and doings of human beings" (p.
15).

2. Emerson believed that this basic nature makes the world joyous. It gives people
an opportunity to exercise their native powers with success, because the world is
fundamentally supportive of human striving.

3. And finally, Emerson believed that human powers haven't yet been fully
unleashed, but they could be through the "genius of individuals willing to rely on
and trust themselves" (p. 16).

The test-first programmer ontology, I think, shares points (1) and (2). It differs from point
(3) in being less of a cult of individuality. The ontology locates genius in assemblages of
tools, techniques, disciplines, and teams more than in individuals. It is, I claim, the
construction of those assemblages that has allowed programmers like me to believe in (1)
and (2), which are very far from the normal "software engineering" ontology.

In that ontology, the world is corrupted by entropy. Software will inevitably decay into
what Foote and Yoder (XX) call a "big ball of mud," a tangled mass of unmaintainable
code in which each change makes future changes incrementally harder. In this ontology,
the sensible response is to fight against entropy as long as possible. The main weapon is
control of change. Your goal is to understand everything the software will have to do at
the very beginning, so that you build it right the first time and then never change it. Since
that goal is impossible, the secondary goal is to anticipate the kind of changes that will
happen, then build the software to accommodate those. Since that's also impossible - the
world has a way of coming up with changes you didn't foresee - the tertiary goal is to
resist changes ("can't be done, nope") as long as possible and, when overruled, make
them as small and localized as possible.

24

It's not such a cheery worldview. It contrasts with what's now called the "Agile"
worldview, which counsels "embracing change" (the subtitle of Beck XX) in the
expectation that change will - if properly managed - lead to programs that are ever more
capable of supporting change.

So how did this ontology emerge? A good answer awaits a longer study, but my tentative
speculation is that it began as an accommodation to a major episode of resistance. The
accommodation led to an increasingly successful practice. The increasing success cast
increasing doubt on the ontology of inevitable decay, which became both tacitly and
explicitly replaced by the new ontology. That new ontology feeds back into the mangle of
supporting practices and tools, bringing to bear new conceptual resources (like the
rhetoric of emergence in Complex Adaptive Systems (Schwaber XX, Highsmith XX) and
the theorizings of scholars like Pickering.

Let's start with Smalltalk.

Smalltalk is both a programming language and a programming environment. That is, it's a
large program used to write Smalltalk programs, with the twist that it's a program that's
itself written in Smalltalk. Any Smalltalk programmer has direct access to (almost) all of
the Smalltalk code used to make up the environment itself. That allows many powerful
and flexible things.

The Smalltalk environment is quite old as programs go. I have on my bookshelf two
volumes describing the 1980 version, and it was already quite sophisticated then. The
sophistication is of a certain form. Like certain other languages, Smalltalk is an exercise
in pushing certain simple and elegant ideas about structuring programs as far as they can
go. Over the years, its implementers found they could go quite far indeed. As they
continually went further, found more power in the ideas, they revised the environment
itself to demonstrate and use those ideas. Perhaps because the environment was a flagship
demonstration of the ideas, perhaps because the implementers were researchers without
time pressure, perhaps because they were really very good - for whatever reason,
Smalltalk avoided the entropy that plagues programs.

The Smalltalk environment was also characterized by support for a highly interactive and
exploratory programming style. Smalltalk programmers were used to writing small
amounts of code and getting almost instant feedback. Their tools gave them very
sophisticated tools for understanding what was happening with their programs.

The future looked bright for Smalltalk. Its devotees believed that it was obviously
superior to the alternatives and soon vast numbers of people would be programming in it.
But, for various reasons still disputed today, Smalltalk failed in the market.

But there was one exception: financial services. Smalltalk started to be used for things
like internal support programs in insurance companies (such as programs to calculate
values for new types of policies), and payroll programs, and the like.

That's a significant change. At that time, internal "IT" jobs were decidedly not the
glamour jobs for programmers. Graduates from the elite or even semi-elite schools
looked down on such jobs, and they were staffed by lesser programmers (at least
according to the standards of the elite schools).

25

And yet the Knights of the Square Bracket™ needed to keep programming in Smalltalk,
so the many of them joined the IT world. That's an interestingly different one from
Smalltalk's original world:

* There is a constant flood of externally-generated change requests that have to be
finished so fast that there seems to be no time for the loving crafting of internal
structure that Smalltalk was known for.

* The programs have to cope with (implement) business rules that make no
ahistorical sense. Most business's rules are a mass of special cases. One rule exists
because some salesperson twenty years ago was only able to close a deal by
promising a change to one little bit of the standard policy. Another rule exists
because it was inherited from a small company acquired fifteen years ago. And so
on. These special cases push away from the sort of elegant and concise programs
that elite programmers are taught to value. The result is very different from taking
one powerful and simple idea and seeing how far it could go. The Knights moved
from what might (oversimplistically) be called a world of hedgehogs to what is
definitely a world of foxes.”'

* The people doing the programming are not elite programmers and have less of a
drive to construct elegant and concise solutions.

Bam! Resistance.

I interpret what happened next in two ways. First, the Knights tried to accommodate the
resistance by finding techniques to allow them to write their familiar style of program in
this radically different environment. Second, they turned part of their attention away from
elegant, powerful, and emergent program structures to elegant, powerful, and emergent
human structures. As a consequence, there's a historical trajectory toward a collection of
techniques (like test-driven design) that decenter human planning in favor of a fluid
reaction to the flow of discipline and impulses from "outside".

I know of no short way to talk about the resulting practices, their relationship to where
the Knights started, and their relationship to the IT environment. So let me pass over that
with only the claim that it seems manglish to me. Instead, I'll talk about why I believe it's
fair to talk about constructing an ontology.

The first key thing is that the practices worked. They produced decent software, at least
as good as that produced by conventional techniques. More significantly, they produced
enthusiastic programmers. The practices were more aligned to their goals: joyful work,

craftsmanship, a feeling of steady progress.

* People who will do almost anything to keep programming in Smalltalk. So-called because Smalltalk is
unusual among programming languages for using square brackets for grouping. See
http://wiki.cs.uiuc.edu/Visual Works/The+%?221'll+give+up+Smalltalk+when+they+pry+my+cold+fingers+
from+the+browser%?22+club+

*!' From Isaiah Berlin (XX): "The fox knows many things, but the hedgehog knows one big thing." Berlin
was writing of authors. Hedgehogs have one overarching principle they can apply universally; foxes have a
myriad of truths that they apply situationally.

26

The second key thing is that the practices kept working better. The techniques are
typically easy to start with and produced fairly immediate gratification. They come with
free tools that support them. The tool industry (both free and expensive) has been tuning
tools to the practices, making them (and the programmers that use them) more successful.
Trickier problems (how do you refactor database schema? how do you develop graphical
user interfaces test-first?) are being chipped away at, and the results are being published
both informally and formally. In the terminology of Lakatos (XX), we have here a
progressive research programme. That is, the world of problems seems to be giving way
to a "hard core" of postulates.”

In such a situation, one where formerly knotty tasks keep getting easier, and the hard core
is continually throwing up what Lakatos calls novel confirmations, and the hard core
represents a radical shift from prior practice and belief (in this case, the shift away from
the individual and conceptual toward the social (team-oriented) and material®), it is
natural to think you've stumbled on a new discovery about the way the world is: an
ontology like Emerson's, but with the self-reliant individual replaced by an assemblage of
people, disciplines, and tools.

I'm a partisan, so I find this a hopeful sign where some see a retreat from rationality.**
This new ontology will make progress more likely: if the world truly is beckoning us on,
we'll be less inclined to give up on making programs ever more responsive. It is, I think,
through the mangling of ontologies in practice that the like-minded gain the resolve to
create a new world.

2 In the case of the agile methods, the postulates are to favor (1) individuals and interactions over processes
and tools, (2) working software over comprehensive documentation, (3) customer collaboration over
contract negotiation, and (4) responding to change over following a plan. That's from the Agile Manifesto
(XX), so it's a tad vague. See Cockburn XX or Schwaber XX for more exposition.

¥ Today there are programmers happily programming in large bullpens, writing code only in pairs,
planning by scribbling on 3x5 cards, and working without any notion of "code ownership". If you'd
predicted that a decade ago, when they were fighting to stay in their semi-private offices and out of
cubicles, they would have thought you mad.

** At a workshop where I submitted a position paper titled "Agile methods, the Emersonian worldview, and
the dance of agency", one colleague - a person sympathetic to the agile methods - quoted his M.D. wife as
saying that if, in fact, I believed this position paper, her diagnosis would be clinical schizophrenia. Judge
for yourself: http://www.visibleworkings.com/papers/agile-methods-and-emerson.html

27

Appendix A - programming by example
In this section, I'll explain the code used in this paper in more detail. Let's begin with the
untidy version of the fixture that causes all the tests to pass. It begins like this:

public class AnimalProgressFixture extends fit.StepFixture {
... lots of stuff ...
¥

This defines a new class (kind) of object. An object is a distinct program entity that
bundles together state (memory) and behavior. The class definition describes the
behavior and the kinds of state that all objects "of that class" share. Let me start with a
simpler example:

public class Worker {
... lots of stuff ...
¥

Here's how you create a particular Worker:
Worker someWorker = new Worker();
someWorker is a variable. Think of it as naming a particular new Worker.

Let's suppose that all we care about is money. A worker has a particular salary, which can
be paid at periodic intervals. We pay someWorker by sending it a message, like this:

someWorker.pay Y ourself();

How does someWorker know what to do with the payYourself message? By looking for
the method definition in the class, which would look something like this:

public class Worker {
public void payYourself() {
... whatever needs to be done to pay yourself...

}
T

How does the Worker know how much to pay itself? It has to be told its salary:
someWorker.setSalary(100000);

Here, the 1000000 (presumably representing an amount of currency) is the argument to
the message. This message send tells the object to execute (run, perform) the following
method:

28

public class Worker {
private int salary = 0;

public void setSalary(int amount) {
salary = amount;

}
T

Look at setSalary first. It declares that its argument is an integer (inf) and gives it a name
(amount), then stashes the value away as part of someWorker's state by assigning it to
variable salary. In every Worker, the name salary refers to the stashed salary. If the
salary is never assigned any other value, it's zero.

Now's perhaps a good time to talk about the two "private" and "public" annotations.
Something that's public is available to other objects. Any object can set someWorker's
salary through setSalary. But no object besides someWorker itself can change
someWorker's private salary directly. We'll see more of this in a moment.

We have almost enough to understand AnimalProgressFixture. Let's suppose there are
special kinds of Workers. For example, my wife's a professor, which means she doesn't
pay FICA (social security). That's different from most workers. But in many other ways,
she's just the same. She does have a salary, she does pay Federal income tax, and so forth.
It would be convenient to say, "Professors are pretty much Workers, except for the
following differences..." In the Java programming language, that looks like:

public class Professor extends Worker {
public void payYourself() {
... Special ways that Professors pay themselves...

}
T

Suppose you make a new professor:
Worker drDawn = new Professor();
And you set a salary and pay it:

drDawn.setSalary(100000);
drDawn.pay Y ourself();

What happens? There are two versions of payYourself. One belongs to Worker, and one
to Professor. Since Dawn is, specifically, a Professor, the Professor version will be used.
The Java language automatically knows to use the most specific one. This is called
runtime polymorphism. It's polymorphic because a single message corresponds to several
methods with the same name (in different classes). It's runtime because Java picks which
one to use at the last moment.

In contrast, there's only one version of setSalary, the one belonging to Worker. All
Workers set their salary the same way, so that's the only setSalary Java will ever use.

29

Programmers would say that Professor inherits the setSalary method from Worker, but it
overrides Worker's payYourself method.

The starting code
So now I hope you understand this:

public class AnimalProgressFixture extends fit.StepFixture {

Our program will contain one or more AnimalProgressFixture objects, each of which is a
kind of fit.StepFixture. That means they inherit a bunch of behavior from fit.StepFixture.
That behavior is all concerned with interpreting tables. What's in the
AnimalProgressFixture is all about the content of those tables. Here's some of that:

private int balance = 0;

private int dailyCharge = 0;

private String studentMilkingFrequency = "never";
private String caretakerMilkingFrequency = "never";
private String studentTemperatureFrequency = "6 hours";

Here's the state that the AnimalProgressFixture works with. balance should be familiar -
it will be used just like a Worker's salary. But not everything this fixture works with will
be a number. It also works with strings, like "never", which are just sequences of
characters.

Here's a method definition:

public void newCase(String animal, String owner) {

}

It's invoked by a table entry like "new case | betsy | rankin". The class fit.StepFixture
knows how to turn that entry into a message to this AnimalProgressFixture. But newCase
does nothing. That's because there's nothing in any test that forced me to write any code
in here. (My discipline is to only write code required to make a failing test pass.)
Presumably someday there will be tests that make the names of animals and owners
relevant.

Here's a method that does things:

public void order(String order) {

maybeUpdateDailyCharge(order);

maybeUpdateBalance(order);

if (order.equals("milking")) {
studentMilkingFrequency = "3 hours";
caretakerMilkingFrequency = "12 hours";

} else if (order.equals("normal board")) {
studentTemperatureFrequency = "never";
studentMilkingFrequency = "never";

¥
¥

30

The first thing it does is send two messages. But notice that these look different. Instead
of being of the form object.message(argument), no object is given. That's shorthand for
sending the message to this object itself, not another one. If you look further down in the
code, you can see the methods maybeUpdateDailyCharge and maybeUpdateBalance.

After that, there's an if test. The awkward-looking order.equals("milking") says "if the
order is the string 'milking' then..."

Finally, let me complete the explanation with two more methods:

public void charge(int amount) {
balance += amount;

}

public int balance() {
return balance;

}

I hope the first is now familiar, except for the odd jargon "+=". That means that balance's
value should be increased by the value of amount.

The second is different because of "int" in front of "balance()". Everything else we've
seen up to now has been labeled "void". When a message invokes a method, that method
can return some value to its invoker. But the "void" has said that each of the methods so
far has nothing to return. The "int" indicates that the method returns an integer.
Specifically, it returns the value of the state variable balance. (Remember that no outside
object can see the balance variable directly, so this is the only way for an outsider to get
at it.)

Order handling

In the discussion, I show how I remove if statements by making orders into their own
classes. Specifically, I take advantage of runtime polymorphism (as with the Professor
extends Worker example above). First, I create an Order class. It doesn't do much of
anything:

public class Order {

public static Order from(String orderName) {
... described later...

}

public void maybeUpdateSchedule(Schedule schedule) {
¥

public void maybeUpdateBill(Bill bill) {
b

31

Here, an Order is an object that could conceivably update both a Bill and a Schedule. But
the generic, default Order actually does nothing. It is the special case classes (called
subclasses) that do the work. Here's the subclass for the order to milk, the MilkingOrder:

static class MilkingOrder extends Order {
public void maybeUpdateSchedule(Schedule schedule) {

n.n

schedule.set("student", "milking", "3 hours");

non

schedule.set("caretaker", "milking", "12 hours");

¥
¥

A MilkingOrder is just an Order, except it has its own special version of
maybeUpdateSchedule. That method overrides Order's version to do something:
specifically, to change how often the student and caretaker milk. Notice that the
MilkingOrder doesn't affect the bill. An owner is charged the same whether or not the
cow is milked.

In contrast, PathologyOrder changes the bill but does not change what the student or
caretakers do:

static class PathologyOrder extends Order {
public void maybeUpdateBill(Bill bill) {
bill.charge(80);
¥
¥

32

Appendix B - programming jargon
Gosh, I don't think this is going to help.

argument
A data value passed to a method when sending a message. Within the invoked
method, the value is assigned to a variable.

assignment
Assignment associates a particular value with a variable. Thereafter, you can use
the variable to obtain the value.

behavior
The externally visible results of sending a message to an object.

body, method
The body of the method is the actual code that produces a result when the method
is invoked. Contrast to its declaration.

class
A class describes what's common to a bunch of objects. It describes the messages
that can be sent to one of these objects and the kinds of state that the objects
maintain. You can think of a class as a Platonic ideal object.

declaration, method
The method declaration gives the method's name and describes each of its
arguments. It does not describe how the method does whatever it does.

definition, method
Same as the method body.

fixture
An object that understands how to read a test table and convert rows within it into
message sends (to the object itself).

inheriting a method
Suppose Professor is a subclass of Worker. Then Professor inherits each method
defined in Worker that Professor does not itself define.

invoking a method
See sending a method.

Java
A particular programming language.

method
A method contains code that does some useful chunk of behavior. All the action
in a program happens when methods are invoked by objects.

message
A message is a way to refer to an object's method.

message sends
See sending a message.

object
An object is the fundamental bundle of "stuff" within a program. It is described
by a class. The class might say, for example, that its objects have strings called
address and name. But each object will have its own value for those two values.
When objects are sent messages, they typically perform some action that depends
in part on the values of the state.

33

overriding a method
Suppose Professor is a subclass of Worker and that both Professor and Worker
define a method named foo. Then Professor's foo overrides Worker's foo. If a
professor object is sent the foo message, its foo will be used rather than Worker's.

recursion
See recursion. (Sorry: traditional joke.)

refactoring
When code is refactored, its externally-visible behavior and declaration stay the
same, but its internal structure or form is changed.

sending a message
A message is sent to an object receiver by an object sender when sender names
one of receiver's methods and supplies values for each of that method's
arguments. In Java, a message send would look like this:

receiver.methodName(valuel, value2)

state
The memory of an object. A value that is retained until its replaced by some other
value.

string
A sequence of text characters, like "hello".

subclass
A class that's a specialized version of some other class. For example, a
SociologySeminar would be a subclass of the Seminar class. It would inherit
those methods of Seminar that it did not override.

variable
A variable is a name that's used to hang onto some value for later use.

34

