
www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing Ju ly/Augus t 1999
4

a tired subject. It grapples with the messiness and uncer-
tainty of the real workplace. Too often, process designers
yearn for the abstract Right Process. I know I do. That
leads to processes that don’t work with real people in real
situations. Mark’s article is a corrective.

Process design and the management of software devel-
opment is a theme of this issue. While editing, I found my-
self thinking about catastrophes. In his 1984 book Normal
Accidents, sociologist Charles Perrow claims that some
systems encourage local problems to blossom into system-
wide accidents, despite efforts to make them safe. Some-
times the attempts to increase safety themselves cause
problems. (The experiment that led to the Chernobyl disas-
ter was intended to improve a safety system.)

These systems have both complex interactions and
tight coupling. (I’ll define those below.) Software develop-
ment processes also have these characteristics, perhaps in-
evitably. What worries me is that I see process improvement
efforts that add more complexity and tighter coupling. So
I’d like to sketch Perrow’s ideas and suggest that you keep
them in mind next time you about think about how software
should be created.

Complex interactions. A complex interaction is best
defined in contrast to a linear one. That term is intended to
evoke the image of an old-fashioned automobile assembly
line, in which production takes place in a series of steps
that are isolated and visible. When something breaks, it’s
easy to tell which step is to blame. It’s also easy to under-
stand the consequences: the following steps must stop. You
can fix a step without causing something unexpected to
happen to earlier or later steps.

What if the interactions aren’t so linear? What if they
look more like this?

Failures now have less predictable consequences. If a
step takes input from two preceding steps, what happens
when just one of them fails? If a step’s output is simultane-
ously used by two later steps, can you adjust the first without
simultaneously mal-adjusting the second? What if the steps
are involved in feedback loops, which are notoriously diffi-
cult to understand?

Notice also the overlapping boxes with no arrows be-
tween them. Those boxes are not in production se-
quence—they have no intentional interactions. However,
they nevertheless interact. For example, they may be so
physically close that a failure in one causes a failure in the
other. (Water in a drinking water tank may spray onto an
outflow valve, freeze, and crack it.) These interactions are
often unknown until after an accident.

Moreover, complex systems provide limited visibility
even to known interactions. In the Three Mile Island nu-
clear accident, the operators relied on instruments and in-
dicators that, in some cases, lied—and at best provided an
incomplete picture. They were forced to guess about what
was going on. When they guessed wrong, they compounded
the problem. Therefore, the previous picture is misleading.
To capture the experience, connections should be ob-
scured, like the following:

You find more specialists in complex systems. But
when unplanned interactions span specialization bound-
aries, it’s much harder for anyone to understand what’s
going on and know how to fix it without breaking some-
thing else.

Tight coupling. Again, I’ll define by contrast.
If you’re building a house, fall behind schedule, and

the shingles arrive before you’re ready, you stack them
somewhere for a while. You can do that because the arrival
of shingles is loosely coupled to their use. It’s much more
difficult to make a chemical reaction stop while you fix a
downstream step.

If the shingles arrive late, you can still make progress
by doing something else that you originally planned to do

Technically SpeakingTechnically Speaking

Normal Processes
by Brian Marick

In this issue, Mark Johnson has an article

about ISO 9000 registration…

Wait! Come back! It’s a refreshing take on

This article is provided courtesy of STQE,
the software testing and quality engineering magazine.

http://www.stqemagazine.com/

later. In contrast to houses, there may
be only one order in which you can
make a chemical product.

More generally, a loosely-coupled
system allows alternate methods to
reach the goal, as well as the time in
which to find them. Methods are op-
portunistic—successful jury-rigging is
common. In a tightly-coupled system,
however, attempts to jury-rig often
make things worse.

(Note that Perrow’s definition of
“tight coupling” is at odds with how
the term is used in the software engi-
neering literature, in which its mean-
ing is closer to what Perrow calls in-
teractive complexity.)

Seeing Through
Perrow’s Lens
Suppose I’m a development manager.
One of my developers has read
about “pair programming” as used
in the rapid development style
called Extreme Programming
(www.armaties.com), and thinks we
should try it.

Teams using pair programming
never write code except in pairs sit-
ting together at one computer. One
types, while both actively observe and
talk through what is being created
(essentially doing a real-time review).
At the end of a development task,
pairs split up and move on to other
tasks in other parts of the system.

Having read Perrow, what
thoughts might I have? Pair program-
ming looks good. It works to reduce
complexity by preventing dangerous
specialization. Using different part-
ners means that eventually everyone
gains familiarity with many parts of
the system. That makes it easier to
make changes without inadvertently
breaking something you didn’t know
about—and when you do break some-
thing, you can figure the problem out
faster. Since Extreme Programming is
designed for complex programs
whose requirements change frequent-
ly, generalists are essential.

Pair programming increases visi-
bility. In most organizations, there’s a
formal process and an actual one. The
formal process might say “no coding
until after the design review.” The ac-
tual one says, “You don’t have time to
wait for the design review. Start cod-
ing now, and incorporate the results
of the review after it happens.” (This
is an attempt to reduce coupling, akin
to starting another task while waiting
for the shingles to arrive.) When the
project runs into problems, the Pow-
ers That Be tend to intervene in
what’s supposed to be happening, not
what’s actually happening. The inter-
ventions can make the actual process
worse, as happened at Three Mile Is-
land. In pair programming, the formal
and actual processes are closer be-
cause monitoring is more immediate.
Coding while waiting for a review is

easy—who’s looking?—but slipping
unwatched changes past your “other
half” is hard.

Why do reviews take forever?
The reviewers all have other tasks
that are more important to them. My
code doesn’t depend in any way on
the reviewer’s—we’re not in produc-
tion sequence—but my progress de-
pends on hers. If she’s having prob-
lems, my review will be hurt. (In the
lingo, she causes a common mode
failure.) In pair programming, the
person I depend on thinks our task is
as important as I do.

Coding before the review is done
causes yet more complexity. The out-
put of the design now feeds into two
parallel steps: reviewing and coding.
When coding reveals problems in the
design—which it always does—more
“components” (people) are affected.
In pair programming, everyone imme-
diately concerned is sitting right there
at the moment problems are found, so
the feedback loop is simpler.

I’m making no blanket condem-
nation of design reviews. There’s am-
ple evidence that we should do more
of them, not less. My point is only that
Perrow’s analysis is one way to help
us better anticipate consequences of
our process decisions. STQE

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing Ju ly/Augus t 1999
6

Technically SpeakingTechnically Speaking

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

STQE magazine is produced by
STQE Publishing, a division of
Software Quality Engineering.

http://www.stqemagazine.com/

